
First Experiences with TIRA for
Reproducible Evaluation in Information Retrieval

Tim Gollub, Steven Burrows, Benno Stein
Bauhaus-Universität Weimar

99421 Weimar, Germany
<first name>.<last name>@uni-weimar.de

ABSTRACT
The verifiability and comparability of computational experiments is
a major shortcoming in scientific publications, even at top confer-
ences. In recent years, various services emerged that try toaddress
this problem by providing a global platform where researchers can
upload programs along with experiment results. However, these
platforms are not well accepted, partly due to their inherent top-
down character: a single institution prescribes the formats and tech-
nologies to be used. We argue that a community-wide evaluation
platform can evolve only from an ongoing bottom-up effort.

For the field of information retrieval we have been undertaking
concrete steps to launch and foster this idea with TIRA [4]. Here,
we present the concept and an implementation of a web-based ex-
perimentation environment that greatly simplifies maintenance and
publishing of executable experiments for a research group.TIRA’s
system architecture retains researcher’s full control over their re-
search assets; moreover, no constraints with respect to data formats
or programming technologies are prescribed. We see severalrea-
sons for researchers to publish their experiments as a web service
with TIRA, namely, to simplify their experiment design and execu-
tion, to gain credibility, and to easily disseminate results.

This paper reports on experiences from developing TIRA to-
wards our goal. Design goals are reviewed, existing evaluation
platforms are analyzed, and the architecture of our currentimple-
mentation is presented. In particular, we present insightsfrom the
first widespread use of TIRA at the PAN series of international pla-
giarism detection competitions in 2012. Altogether, our review is
promising: the design decisions underlying TIRA are both power-
ful and flexible enough to cope with the widely varying program-
ming preferences of the researchers.

Categories and Subject Descriptors: H.5.3 [Information Sys-
tems]: Information Interfaces and Presentation—Group andOrga-
nization Interfaces
Keywords: Open Evaluation, Experiment Management, Result
Dissemination

1. MOTIVATION
John Ioannidis attracted considerable attention in 2005 with his

essay “Why Most Published Research Findings Are False” [5].
Ioannidis argues that research findings published in papersare
likely to be biased towards the approaches of the authors, com-
monly because of selective result reporting and unequal parameter
tuning efforts. To improve upon this situation, he concludes that
official evaluation initiatives are needed where researchers regis-
ter their approaches for an objective assessment. In addition, the
The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

SWIRL 2012 meeting of 45 information retrieval researcherscon-
sidered evaluation as a “perennial issue in information retrieval”,
and that a “community evaluation service” is of specific interest [1].
With initiatives such as TREC1, CLEF2, and PAN3, the informa-
tion retrieval research community has established evaluation cam-
paigns with great success, with datasets of past campaigns being
frequently used for current research.

We see two major limitations of these initiatives that we want
to overcome with our open source evaluation platform TIRA (the
“Testbed for Information Retrieval Algorithms”). First, it is obvi-
ous that the scale of these initiatives cannot address all interesting
research questions that arise. To cover the bulk of remaining re-
search questions, a community wide evaluation campaign is needed
that is supported by convenient open software. Any researcher must
be empowered to easily set up and conduct an evaluation initia-
tive for a specific task of interest. Second, the annual schedule
of renowned evaluation initiatives is problematic. In thisrespect,
Armstrong et al. [2] analyzed the performance results achieved out-
side the official TREC initiative on various TREC collections as
published in SIGIR and CIKM papers from 1998 to 2008. The find-
ings showed that the vast majority of these papers are not stream-
lined with the official TREC results, which in turn leads to a series
of false conclusions in the papers and “improvements that don’t
add up”. To avoid the ignorance of existing results, ongoingevalu-
ation initiatives are needed that continuously integrate new results
submitted over the Web.

With TIRA, we are developing an open source evaluation plat-
form where we aim to overcome the limitations stated above [3, 4].
The decisive feature of TIRA is that the software can be down-
loaded by any research group to organize and conduct an evaluation
initiative on their local computing infrastructure. For every experi-
ment, TIRA provides a web service through which participants can
submit their algorithms or results at any time. TIRA evaluates new
submissions automatically by executing the experiment evaluation
software provided by the evaluation organizers from the command
line of the underlying operating system. All experiment results are
stored and indexed in a database, which is queried by the web ser-
vice to display the current results.

In the remaining sections of the paper, the design goals for TIRA
are presented and compared to existing experiment platforms in
Section 2, whereas in Section 3 we explain the system architec-
ture of TIRA in detail. In Section 4, we give an experience report
of our first significant deployment of TIRA at the PAN plagiarism
detection competition, and we provide lessons learned and future
recommendations. We then summarize our work in Section 5.
1
http://trec.nist.gov

2
http://www.clef-initiative.eu

3
http://pan.webis.de

2. DESIGN GOALS AND RELATED WORK
Our efforts to make the deployment of TIRA as simple and con-

venient as possible led to a set of five design goals that we consider
as crucial for its widespread use. The design goals are basedon
the needs for local instantiation, web dissemination, platform in-
dependence, result retrieval, and peer to peer collaboration. Our
assessment of existing experimentation frameworks with respect to
these goals is depicted in Table 1, which shows that none of these
systems fully comply.

Table 1: Assessment of existing experimentation frameworks with re-
spect to our five proposed design goals.

Tool URL Domain 1 2 3 4 5

evaluatIR 1 IR ✕ X X X ✕

expDB 2 ML ✕ ✕ ✕ X ✕

MLComp 3 ML ✕ X ✕ X ✕

myExperiment 4 any ✕ X X X ✕

NEMA 5 IR ✕ X ✕ X ✕

TunedIT 6 ML, DM X X ✕ X ✕

Yahoo Pipes 7 Web ✕ X ✕ ✕ ✕

1http://www.evaluatir.org/ 5http://www.music-ir.org/
2http://expdb.cs.kuleuven.be/expdb/6http://www.tunedit.org/
3http://www.mlcomp.org/ 7http://pipes.yahoo.com/
4http://www.myexperiment.org/

1. Local Instantiation. In case data must be kept confidential,
the platform must be able to reside with the data, hence the plat-
form must be locally installable. Unlike centralized experiment
platforms like MLComp and myExperiment, local instantiation al-
lows experiments on sensitive data to be published as a service from
a local host. External researchers can then use the service for com-
parison and evaluation of their own research hypotheses, whilst the
experiment provider is in full control of the experiment resources.

2. Web Dissemination.URLs are definitive identifiers for digital
resources. If all runs of an experiment are accessible over aunique
URL, researchers can conveniently link the results in a paper with
the experiment service used to produce them. Especially forstan-
dard pre-processing tasks or evaluations on private data, such a web
service can become a frequently cited resource. In addition, at-
tention can be attracted to one’s work through integration of the
service into home pages and blog articles. To address the issue of
digital preservation, URLs should encode all information needed to
recompute a resource, such as program and input parameter speci-
fications, in case stored data is lost.

3. Platform Independence.The sophisticated and varying soft-
ware and hardware requirements of information retrieval experi-
ments as well as individual coding preferences of software devel-
opers render any development constraints imposed by the experi-
mentation framework critical for its success. Ideally, software de-
velopers can deploy experiments as a service unconstrainedby the
utilized operating system, parallelization paradigm, programming
language, or data formats. Local instantiation is one key toreal-
ize this goal. Furthermore, the experimentation frameworkmust
operate as a layer strictly on top of the experiment softwareand
should use, instead of close intra-process communication such as
in TunedIT, standard inter-process communication on the POSIX
level and the file system to exchange information. This way, any
running software can be deployed as a web service without internal
modifications.

4. Result Retrieval. Especially for computationally expensive
retrieval tasks, the maintenance of a public result repository can
become a valuable asset of a research group. For example, exper-

iment services that can index datasets with state-of-the-art natural
language processing technology have the potential to raisethe com-
parability of retrieval model research to a higher level. For cluster-
ing and result diversification research, comparability is enhanced
by establishing static snapshots of the search results frommajor
search engines regularly. The persistent storage of experiment re-
sults by the experimentation framework is key to achieve this goal.
Even if the public release of an experiment service is not desired,
the framework is still useful if it assumes responsibility for manag-
ing the raw experiment results and making them available across a
research team.

5. Peer to Peer Collaboration.Consider a scenario where a con-
sortium of service providers become renownedgatekeepers for var-
ious streams of research, and maintain the community-wide reposi-
tory of state-of-the-art algorithms, datasets, and experiment results
on their web site. The gatekeepers drive the standardization of data
formats and can, by utilizing the retrieval facility, stagecompeti-
tions in a semi-automated fashion. A mechanism for connecting the
local framework instances to a network of experimentation nodes
has to be provided to achieve this scenario. Note that currently none
of the experimentation platforms implements peer to peer collabo-
ration.

3. SYSTEM ARCHITECTURE
The basic functionality of TIRA is to take a locally executable

program and turn it into a web service. To use TIRA for this pur-
pose, the software is first downloaded and instantiated on the lo-
cal computing infrastructure. System compatibility should not be-
come an issue here, since we distribute TIRA as an executableJava
JAR file.4 For the deployment of new programs, TIRA requires a
program specification file in JSON format: theProgramRecord, as
shown in Figure 1. In its minimal form, theProgramRecordcom-
prises (1) a unique name for the program, (2) the generic structure
of the program execution command, and (3) the value range of each
input parameter that affects the output of the program. An example
of a generic program execution command and its respective input
parameter specification is given in Figure 2. In general, more com-
plex commands are possible that concatenate multiple programs
via UNIX-pipes or define parameter substitutions that produce non-
terminals (further parameters).

Provided with the information in theProgramRecord, TIRA in-
stantiates and updates all system components that are needed to
establish a web service for the new program. All system com-
ponents are shown in Figure 1. The operating principle of TIRA
can be described as two major processes: the front-end process
dealing with user interaction, and the back-end process dealing
with program execution. As indicated in the component dia-
gram, theProgramDatabasetakes on a special role in TIRA’s sys-
tem architecture, since it links the two processes together. The
ProgramDatabaseis instantiated for eachProgramRecordindivid-
ually, it stores past and pending program runs, and it indexes the
input parameters of the runs to provide basic retrieval functionality.
Note that besides the default local database, TIRA can also connect
to a database on a foreign TIRA instance to accomplish peer-to-
peer collaboration. The front-end and back-end processes are un-
affected by this distinction. In the remainder of this section, the
components of these two processes are described beginning with
the back-end process first, followed by the front-end process lastly.

The TIRA back-end process involves theProgramWrapperand
ProgramSchedulersystem components. For eachProgramRecord,
an individual ProgramWrapperis instantiated to query its asso-
4Seehttp://tira.webis.de for latest TIRA release information.

HTTP -
CLIENT

lookup

execute

update

TIRA
SERVER

lookup

create

update

PROGRAM
DATABASE

PROGRAM
WRAPPER

lookup

PROGRAM
SCHEDULER

register

execute
update PROGRAM

RECORD

Front-end process Back-end process

1..n
1..n

1..n

Figure 1: Component diagram of TIRA. Towards the left, the front-end process dealing with the user-interaction is illustrated. To the right, the
back-end program execution process is shown. Requests are illustrated by arrows and imply a response from the requestedcomponent.

python myexp . py $param1 $param2 > r e s u l t . t x t
$param1−> a | b | c
$param2−> [0−9]+

Figure 2: BNF grammar for a Python program “myexp” with two in put
parameters for execution in TIRA.

ciatedProgramDatabasecontinuously for pending program runs.
Given that TIRA instances might be equipped with different re-
sources in a collaborative environment, the lookup requestsent may
contain constraints with respect to accepted input parameter values.
When a matching program run is received, theProgramWrapper
registers this at theProgramSchedulerfor addition to an execution
queue. TheProgramSchedulerkeeps a pool of system threads,
which continuously take the next run in the queue and request
its execution. To start the program, the generic command in the
ProgramRecordis substituted with the run-specific values and is
called inside a run-specific working directory. During execution,
the ProgramWrapperlistens on the error output stream and up-
dates the database with notifications and results, which then be-
come available to the front-end process.

The TIRA front-end process involves the remainingTiraServer
and HttpClient system components. TheHttpClient is usually
a web browser controlled by a TIRA user, but also a TIRA in-
stance may fill this role to communicate with other TIRA in-
stances. For eachProgramRecord, the HttpClient can access a
web page on theTiraServervia a program-specific URL (e.g.
http://<domain>/program/myexp). A screenshot of a TIRA web
page is given in Figure 3. The TIRA web page features the pro-
gram input parameters as HTML form elements, and offers func-
tionality for retrieving program runs with specific parameter values
(Search) and for executing new runs (Execute). The result table at
the bottom contains the current execution status, and the results of
all executed program runs are displayed. If the value range of an in-
put parameter is specified in theProgramRecordas an enumeration
(cf. $param1 in Figure 2), the input values are listed in a selection
box. Otherwise in the case of an intrinsic definition (cf.$param2

in Figure 2), a text input field is given instead. As a third option,
TIRA allows submission files as input parameters, in which case a
file upload element is shown to the user.

To retrieve specific program runs, the TIRA user can specify
a subset of the input parameters and submit the HTML form by
clicking the Search button. TheTiraServerlooks up the database
and returns a web page with the matching results. For retrieval re-
quests, the form is submitted using the HTTP GET method, which
means that all form values are encoded into the URL. This URL can
thus be used for the dissemination of results as discussed inSec-
tion 2. In case all input parameters are populated with validvalues,
the execution of the program can also be requested. Note thatthe
TiraServerhandles multiple values for parameters by generating an
independent program run for each possible combination of values.

Figure 3: Screenshot of a TIRA web page for the PAN competition
2012. On the web page, PAN participants specify a dataset andupload
their plagiarism detection results. On execute, TIRA runs an evalua-
tion script and displays the performance assessment for thesubmission.

This gives TIRA users a convenient means to execute a series of
runs with a single parameter specification. In case a combination
of parameter values has not been seen before, a new program run is
created with a pending status and stored in the database. Responsi-
bility for the pending run is handed to and executed by the back-end
process.

4. ANALYSIS OF TIRA AT PAN
In this section we report on the first deployment of TIRA in an

official evaluation campaign. TIRA has been used as the train-
ing and evaluation platform for the “detailed comparison” task of
the 2012 international PAN plagiarism detection competition.5 The
competition started with the release of training data in March 2012,
and officially ended after the evaluation of the participantsubmis-
sions in July 2012. For TIRA, its successful deployment in the
challenge constitutes an important milestone and was an excellent
opportunity to analyze the software under realistic conditions.

The participants of the PAN “detailed comparison” challenge
were asked to develop software capable of solving the following
task: Given a suspicious document and a potential source document
pair, extract and record all plagiarized passages from the suspicious
document and the corresponding source passages from the source
document. Unlike the previous PAN competitions, the participants
of 2012 did not submit their detection results on an unlabeled test
set, but instead submitted their software. This strategy allowed a
set of real plagiarism cases subject to non-disclosure to beincorpo-
rated into the test set to improve the authenticity of the evaluation.
In addition, the organizers could evaluate the runtime characteris-
tics of the submitted approaches for the first time.
5
http://pan.webis.de/

Two TIRA services were deployed to support the running of the
competition: (1) A service to compute performance scores onthe
training data, and (2) A service for the evaluation of the software
submissions on the private test set. We now describe how TIRAhas
been used in each of these settings in the remainder of this section.

4.1 Training Phase Evaluation Service
For the training phase, the organizers released a dataset with

ground truth to be used by the participants to train their approaches.
A TIRA service was provided to evaluate the performance of an
approach using the training set. On the TIRA service web page,
participants were able to upload their compressed detection results
and receive the “PlagDet” performance score in return (cf. Fig-
ure 3), which combines aspects of precision, recall, and granular-
ity. To compute PlagDet, the compressed submissions were ex-
tracted and evaluated with a Python implementation of PlagDet.
The generic execution command used by TIRA for the eval-
uation was hence: “unzip -qq -o $det -d det && python

perfmeasures.py -p $truth -d det > scores.txt”. The
parameters starting with a$-symbol were substituted according to
the data provided in the web page input fields similar to the exam-
ple described in Section 3 and Figure 2.

For the organizers of PAN, the evaluation service provided some
feedback about the progress of the participants. In the pastcom-
petitions, the organizers observed that the majority of participants
started working seriously only in the few days before the sub-
mission deadline. With the public evaluation service, we hoped
to create an atmosphere where participants were motivated by the
recorded PlagDet scores to date acting as a leader board. Oneweek
prior to the submission deadline, the evaluation service received 12
submissions from two of the eleven final participants. Threefurther
participants started making submissions in the final week, resulting
in 38 computed PlagDet scores altogether. The remaining sixpar-
ticipants did not use the training phase evaluation service, and may
have simply elected to evaluate their training results offline. Al-
though the TIRA service was a useful tool for the participants, we
learned that further incentives for its usage must be provided to ef-
fectively foster the early tinkering within the competition.

4.2 Test Phase Evaluation Service
In the test phase, TIRA was used to organize and conduct the

evaluation of the submitted programs. In total, we receivedeleven
plagiarism detection programs for evaluation on the hiddentest set.
Coincidentally, eleven “external detection” result sets were submit-
ted in 2011 [6], suggesting that the submission of software was an
acceptable demand of the participants. The software received var-
ied greatly with respect to its size, runtime performance, and pro-
gramming language used, and we received submissions for both
Windows and Linux operating systems. In this respect, the system
independence of TIRA has been successfully demonstrated. We
managed to get all submitted software running, and with the excep-
tion of one submission, the output files produced were valid.For
each of the submissions, we created aProgramRecordbased on the
installation manual provided by the participants. Although the pro-
grams sometimes demanded inconvenient input specifications for
processing the test data, the powerful parameter substitution mech-
anism of TIRA made the task achievable. To evaluate each sub-
mission against the test set, we implemented an additional TIRA
service that sends an execution request for every document pair in
the test set to the TIRA service of the submission. Here, the web
dissemination capability of TIRA is highly convenient.

In the near future we plan to give the PAN 2012 participants the
opportunity to opt-in for a public release of their plagiarism detec-

tion software as a TIRA service on our computing infrastructure.
For future evaluation initiatives, we aim to develop an automated
program deployment mechanism for TIRA: Participants download
the evaluation resources for a competition and deploy them on a lo-
cal TIRA instance. Once developing and testing on the local TIRA
instance is done, TIRA sends the finalProgramRecordand software
to the official TIRA evaluation instance, where it is automatically
deployed and evaluated.

5. SUMMARY
Creating fully reproducible and comparable experiments inin-

formation retrieval is highly desirable, and various researchers have
pointed out that advances in the state of the art in this field are dif-
ficult to account without such an achievement. A software service
that meets this challenge and that is accepted within the research
community must provide features such as local instantiation, web
dissemination, platform independence, result retrieval,and peer
to peer collaboration. The TIRA platform addresses these goals
as a new web service to organize and operationalize specific pro-
grammable tasks runnable on the command line. Recently, TIRA
has been deployed “in the wild” for the PAN series of international
plagiarism detection competitions. Our preliminary findings are
positive: even complex evaluations of software submissions can be
easily managed, compared, and published. Based on this experi-
ence we aim to further develop TIRA towards a convenient toolfor
the information retrieval community to conduct evaluationinitia-
tives.

Acknowledgements
The related work and architecture description (Sections 2 and 3)
are reproduced from our paper “TIRA: Configuring, Executing, and
Disseminating Information Retrieval Experiments” [4].

References
[1] J. Allan, W. B. Croft, A. Moffat, and M. Sanderson. Frontiers,

Challenges, and Opportunities for Information Retrieval:Re-
port from SWIRL 2012 The Second Strategic Workshop on In-
formation Retrieval in Lorne.SIGIR Forum, 46(1):2–32, May
2012.

[2] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Im-
provements that don’t add up: Ad-hoc Retrieval Results since
1998. In D. W.-L. Cheung, I.-Y. Song, W. W. Chu, X. Hu, and
J. J. Lin, editors,Proceedings of the Eighteenth ACM Confer-
ence on Information and Knowledge Management, pages 601–
610, Hong Kong, China, Nov. 2009.

[3] T. Gollub, B. Stein, and S. Burrows. Ousting Ivory Tower Re-
search: Towards a Web Framework for Providing Experiments
as a Service. In B. Hersh, J. Callan, Y. Maarek, and M. Sander-
son, editors,Proceedings of the Thirty-Fifth International ACM
Conference on Research and Development in Information Re-
trieval (to appear), Aug. 2012.

[4] T. Gollub, B. Stein, S. Burrows, and D. Hoppe. TIRA: Con-
figuring, Executing, and Disseminating Information Retrieval
Experiments. In A. M. Tjoa, S. Liddle, K.-D. Schewe, and
X. Zhou, editors,Proceedings of the Ninth International Work-
shop on Text-based Information Retrieval at DEXA (to appear),
Sept. 2012.

[5] J. P. A. Ioannidis. Why Most Published Research FindingsAre
False.PLoS Medicine, 2(8):696–701, Aug. 2005.

[6] M. Potthast.Technologies for Reusing Text from the Web. PhD
Thesis, Bauhaus-Universität Weimar, Dec. 2011.

