
Phonetic Matching in Japanese

Michiko Yasukawa∗ J. Shane Culpepper† Falk Scholer†
∗Gunma University, Gunma, Japan †RMIT University, Melbourne, Australia

michi@cs.gunma-u.ac.jp {shane.culpepper, falk.scholer}
@rmit.edu.au

ABSTRACT
This paper introduces a set of Japanese phonetic matching
functions for the open source relational database PostgreSQL.
Phonetic matching allows a search system to locate ap-
proximate strings according to the sound of a term. This
sort of approximate string matching is often referred to as
fuzzy string matching in the open source community. This
approach to string matching has been well studied in English
and other European languages, and open source packages
for these languages are readily available. To our knowledge,
there is no such module for the Japanese language. In this
paper, we present a set of string matching functions based
on the phonetic similarity for modern Japanese. We have
prototyped the proposed functions as an open source tool
in PostgreSQL, and evaluated these functions using the test
collection from the NTCIR-9 INTENT task. We report our
findings based on the evaluation results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, retrieval models,
search process; I.7.1 [Document and Text Processing]:
Document and Text Editing—languages, spelling; I.7.3
[Document and Text Processing]: Text Processing—
index generation

General Terms
Open Source RDBMS, Approximate String Matching, Fuzzy
String Matching, Phonetic Matching, Japanese Information
Retrieval

1. INTRODUCTION
One interesting but cumbersome problem in IR and NLP

research is mismatches between the spelling of words. A
simple question for this problem is: What if two words have
the same meaning but different spellings? This is the issue
explored in this paper. A related but more difficult problem
are homographs, or words with the same spelling. The latter
requires word sense disambiguation (WSD)[7], which is the
task of identifying the meaning of words in a context. In
this paper, we focus only on words with the same meaning

The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

and different spellings. These words are categorized into the
following two types.

• Synonyms – words with the same (or, nearly the same)
meaning, different spellings and different pronuncia-
tion.

• Spelling variation – words with the same meaning,
different spellings and the same (or, nearly the same)
pronunciation.

Synonyms are words that are similar in a semantic sense.
Approaches such as Latent Semantic Indexing (LSI) [2] and
word clustering[9] can be used to alleviate this problem.
Spelling variants are slightly more difficult to classify, and
present a difficult problem in ranked document retrieval
systems depending on keyword queries.

Recent efforts to improve the effectiveness of IR systems
have included web search result diversification [10]. In order
to increase search effectiveness in this task, an innovative
solution to spelling variants is needed. The goal of this paper
is take a first step towards providing an open source tool to
help with this problem in the Japanese language.

The rest of this paper is organized as follows: Section 2
presents string matching methods for English and Japanese;
Section 3 describes our proposed phonetic matching ap-
proach for Japanese; Section 4 reports our findings based
on a preliminary experimental study; and Section 5 presents
conclusions and future work.

2. RELATED WORK
Phonetic matching is a type of approximate string match-

ing. As with other approximate pattern matching methods,
edit distance[6] and character-based n-gram search[8] are
commonly used. The seminal approach to phonetic match-
ing is the Soundex Indexing System[5]. It can accurately
assign the same codeword to two different surnames that
sound the same, but are spelled differently, like SMITH
and SMYTH. The basic coding rules of Soundex are shown
in Figure 1. Both SMITH and SMYTH are encoded as
S530 by Soundex. In English and other languages, revised
versions and alternatives of Soundex have been proposed. A
set of these string matching functions, generally referred to
as “fuzzy string matching”, are deployed in an open source
programming language. These functions are assembled in
an open source relational database, PostgreSQL1 as well and
are applied to the objects in the database or combined with
other relational operations.
1http://www.postgresql.org/



Step-1 Retain the first symbol and drop all vowels.
Step-2 Replace consonants with the following code.

b, f, p, v → 1 l → 4
c, g, j, k, q, s, x, z → 2 m, n → 5
d, t → 3 r → 6

Step-3 Remove the duplication of code numbers.
Step-4 Continue until you get three code numbers.

If you run out symbols, fill in 0’s
until there are three code numbers.

Figure 1: The Soundex Indexing System.

For English, phonetic matching for IR systems has been
studied extensively[1, 3, 11]. If Japanese documents are
transliterated into a Latin alphabet, English methods can
be applied. However, transliteration contains its inherent
problems. Some input characters are lost due to the lack
of correspondence between Japanese and Latin alphabets.
How to reduce the transliteration errors is an interesting
related problem, and will be considered in our future
research. The issue of effective transliteration was explored
by Karimi et al.[4]. Our research interest in this paper is
to develop native matching functions for Japanese search
engines without transliteration.

3. OUR METHODOLOGY
In this section, we present our approach to symbol

grouping and phonetic matching in Japanese.

3.1 Japanese writing system and syllabary
In the Japanese language, the number of phonetic sounds

is relatively small, and simply expressed in the 5×10 grid in
Table 1. It shows the Japanese syllabary, “五十音(Gojūon)”
meaning “Fifty Sounds” in English. In the table, both Hira-
gana symbols (the rounded syllabic symbols) and Katakana
symbols (the angular syllabic symbols) are displayed. Vowel
symbols, such as ア (a) and イ (i), do not have corresponding
consonants, and this is represented as φ in the leftmost
column. In the table, the gray cells are vacant because the
symbols become lost over time. In modern Japanese, there
is no symbol for Y+I (yi), Y+E (ye), W+U (wu), and the
pronunciation for them are the same as φ+I (i), φ+E (e),
φ+U (u), respectively. The symbols for W+I (wi) and W+E
(we) are outdated, but can still be used in modern Japanese.
They are normally replaced with symbols for φ+I (i) and
φ+E (e) because of the similarity of the pronunciation. In
addition to the symbols in the table, the Japanese writing
system takes an additional symbol, ン (n, a syllabic nasal),
symbols with a voiced/semi-voiced sound mark, such as ガ
(ga) or パ (pa), lower-case symbols, such as ッ (tsu, a double
consonant), or ャ (ya, a contracted sound), and a diacritical
mark for a prolonged sound, such as ー (a macron). For
web queries and documents, classical spellings, such as the
usage of obsolete symbols, ヱ (we) or an uncommon usage of
lower-case symbols, e.g, ヶ (ke) substituting for ケ (ke), may
appear in web queries and documents for stylistic reasons, or
simple mistakes. Japanese phonetic matching must account
for such anomalies.

Table 1: The Japanese Syllabary (Fifty Sounds).
Hiragana Symbol Katakana Symbol

A I U E O A I U E O
φ あ い う え お ア イ ウ エ オ 1

a i u e o a i u e o
K か き く け こ カ キ ク ケ コ 2

ka ki ku ke ko ka ki ku ke ko
S さ し す せ そ サ シ ス セ ソ 3

sa si su se so sa si su se so
T た ち つ て と タ チ ツ テ ト 4

ta ti tu te to ta ti tu te to
N な に ぬ ね の ナ ニ ヌ ネ ノ 5

na ni nu ne no na ni nu ne no
H は ひ ふ へ ほ ハ ヒ フ ヘ ホ 6

ha hi hu he ho ha hi hu he ho
M ま み む め も マ ミ ム メ モ 7

ma mi mu me mo ma mi mu me mo
Y や ゆ よ ヤ ユ ヨ 8

ya yu yo ya yu yo
R ら り る れ ろ ラ リ ル レ ロ 9

ra ri ru re ro ra ri ru re ro
W わ ゐ ゑ を ワ ヰ ヱ ヲ 10

wa wi we wo wa wi we wo
1 2 3 4 5 1 2 3 4 5

3.2 Symbol groups in Japanese
Table 2 shows symbol groups for our phonetic matching

functions. The symbol groups are assembled based on
the similarity of Japanese speech sounds. Each symbol
group is given a unique identifier (ID). In the table, text
in parentheses expresses a commentary on each group and
the corresponding consonant, e.g., K for カ (ka) and S for サ
(sa). Vowel symbols, such as ア (a) and イ (i), do not have
corresponding consonants, and hence φ is in the parentheses.

Table 2 composed of 3 distinct parts: “Fifty Sounds,”
“Voiced Sounds,” and “Additional Sounds.” As a whole,
the table covers all speech sounds in modern Japanese that
are writable with Katakana symbols in UTF-8 character
encoding. Different from English phonetic matching that
uses the Latin alphabet or Arabic numeral for input/output
strings, our matching functions take Katakana symbols for
input strings and use Hiragana symbols for output strings.
In UTF-8 character encoding, Katakana symbols are from
ァ (E382A1) to ヶ (E383B6), and the number of Katakana
symbols is 86. Hiragana symbols are from ぁ (E38181) to
ん (E38293), and the number of Hiragana symbols is 83.
The three symbols, ヴ (E383B4), ヵ (E383B5), ヶ (E383B6)
are special symbols. They are defined in the Katakana part
only, and there is no corresponding Hiragana symbol for
these symbols.

In Table 2, Katakana symbols for “Fifty Sounds” (F-01
to F-11) are mostly the same as those in Table 1 with the
exception of Katakana symbols for wi, we and wo because
the Katakana symbols, ヰ (wi), ヱ (we), and ヲ (wo) have the
same pronunciation as イ (i), エ (e), and オ (o), respectively,
in modern Japanese. Hence, F-02 are incorporated into
the same group as F-01 in Table 2. Similarly, V-03 are
separated from V-04, and incorporated into V-02 because
the Katakana symbols, ヂ (di) and ヅ (du) in modern



Table 2: The Symbol Groups for Japanese Phonetic Matching.

ID Fifty Sounds [in] Code [out] ID Voiced Sounds [in] Code [out] ID Additional Sounds [in] Code [out]
F-01 アイウエオ (φ) → E38182 あ A-01 ァィゥェォ (lower-case, φ) → E38182 あ
F-02 ヰヱヲ (obs., φ) → E38182 あ A-02 ー (macron, φ) → E38182 あ
F-03 カキクケコ (K) → E3818B か V-01 ガギグゲゴ (G) → E3818C が A-03 ヵヶ (lower-case, K) → E3818B か
F-04 サシスセソ (S) → E38195 さ V-02 ザジズゼゾ (Z) → E38196 ざ

V-03 ヂヅ (obs., Z) → E38196 ざ
F-05 タチツテト (T) → E3819F た V-04 ダデド (D) → E381A0 だ A-04 ッ (lower-case, T) → E381A3 っ
F-06 ナニヌネノ (N) → E381AA な A-05 ン (syllabic nasal, N) → E38293 ん
F-07 ハヒフヘホ (H) → E381AF は V-05 バビブベボ (B) → E381B0 ば

V-06 ヴ (V) → E381B0 ば
V-07 パピプペポ (P) → E381B1 ぱ

F-08 マミムメモ (M) → E381BE ま
F-09 ヤユヨ (Y) → E38284 や A-06 ャュョ (lower-case, Y) → E38283 ゃ
F-10 ラリルレロ (R) → E38289 ら
F-11 ワ (W) → E3828F わ A-07 ヮ (lower-case, W) → E3828F わ

Japanese have the same pronunciation as ジ (zi) and ズ (zu),
respectively.

Each Katakana symbol for “Voiced Sounds” (V-01 to V-
07) is a symbol with a voiced/semi-voiced sound mark. In
the table, voiceless and voiced (e.g., K and G), voiced and
semi-voiced (e.g., B and P), and Japanese voiced and foreign
voiced (e.g., B and V) are all distinguished and separated
into different symbol groups. “Additional Sounds” (A-01 to
A-07) cover the rest of Katakana symbols and the diacritical
mark, ー (a macron).

3.3 Japanese Phonetic Matching
In the same way as the Soundex Coding System in

English, the matching function in Japanese also encodes
symbols according to symbol groups. Essential steps in the
matching function are described as follows:
Step-1 Encode all strings in text DB in advance.

Step-2 Encode a query string on arrival.

Step-3 Output a matching set of encoded symbols.
The greatest challenge in designing phonetic matching

functions is deciding how to group similar phonetic symbols.
Our approach accomplishes this challenge empirically rather
than theoretically by using the actual speech sound in
modern Japanese. Our first phonetic matching function
(Japanese phonetic matching; jppm) is as follows:
jppm1 Retain the first symbol, and encodes the rest as

encoded symbols according to Table 2. The encoded
symbols are a sequence of Hiragana symbols in UTF-
8 character encoding. While it categorizes Japanese
speech sounds in a rigorous manner, the output code-
words tend to be too verbose, and consequently cause
mismatches with similar strings.

In order to reduce the number of codewords used, we
derive three revised versions from jppm1. They are altered
from the initial version as follows:
jppm2 In order to simplify output code symbols, drop all

symbols if they are vowels (F-01 and F-02) or an
“Additional Sound” (A-01 to A-07) in Table 2. The
first symbol is always retained in this function.

jppm3 In order to simplify encoded symbols, merge groups
in the same line (the same row) in Table 2. To be
more specific, incorporate V-01 into F-03, incorporate
V-02 and V-03 into F-04, incorporate V-04 and A-04
into F-05, incorporate V-05, V-06 and V-07 into F-07,
incorporate A-06 into F-09. The first symbol is always
retained in this function.

jppm4 In order to simplify output codewords, drop A-01,
A-02, A-04 and A-06 in Table 2. The first symbol is
still retained as is.

3.4 Implementation
Our aim is to provide an open source component of

Japanese phonetic matching. We prototyped the phonetic
matching functions in Japanese as an extended version
of the fuzzystrmatch module in the open source rela-
tional database, PostgreSQL. We call the new module
jpfuzzystrmatch and provide its source code under an open
source license2. To help understanding, an example of the
each of the 4 functions (jppm[1,2,3,4]) and an example of
English phonetic encoding systems with a transliteration
system are attached with the source code. The module
contains user-defined C-Language functions, and is compiled
into dynamically loadable objects (shared libraries). It is
distinguished from PostgreSQL internal functions, and can
be loaded by the server on demand.

4. EXPERIMENTS
Evaluation of phonetic matching is an important problem

to consider. In contrast to ad hoc evaluation in IR systems,
there are no standard test collections for phonetic matching
functions. In our experiment, we adapted a standard
test collection for IR systems, the NTCIR-9 Japanese
Intent task, for evaluating phonetic matching functions
in Japanese. To build a text database to query, 84
million index terms were extracted from 67 million Japanese
documents in the ClueWeb09-JA collection. For document
processing, we employed MeCab3 as a morphological an-
2http://www.daisy.cs.gunma-u.ac.jp/jpfsm/
3http://mecab.sourceforge.net/



Table 3: Experimental Results (Average).
CodeLen #Results EditDist Pscore

jppm1 8.2 6.0 1.88 3.06
jppm2 5.3 131.2 3.73 24.00
jppm3 8.2 9.2 2.06 4.29
jppm4 6.3 25.5 2.74 7.19

alyzer in Japanese, and Indri4 as an indexing module to
extract index terms from documents. In order to analyze
how well the new functions work, sufficiently long Katakana
words from topic words in the test collection were used as
query strings. Specifically, we used all Katakana words
which consists of 7 or more Katakana symbols; there were
10 such words in the test set.

Since the judgments in the test collection were not
developed to carry out phonetic matching, how to evaluate
the developed functions needs to be considered. Generally
speaking, it is difficult for human assessors to judge if
two strings are phonetically similar. For example, Zobel
and Dart[11] report a high level of inconsistency among
assessors in such a judgment proces. We therefore adopted
an automatic evaluation approach.

In order to evaluate phonetic matching in an automatic
manner, we make the following assumptions.

• If the discrepancy between two spellings is small,
phonetic similarity is naturally large.

• If many matching strings are returned, the shortened
sequence of symbols is sufficiently generic.

Based on the above assumptions, we define the following
score, Pscore to measure the performance of phonetic match-
ing functions.

Pscore =
#Results

1 + avg(EditDist)

Here, #Results is the number of strings returned by
a phonetic matching function, and avg(EditDist) is the
average edit distance between the query string and each
returned string. Table 3 shows the experimental results.
The average values are across all 10 test queries. In the
table, jppm2 has the highest Pscore. However, manual
inspection of the results showed that this function returned
many strings that are phonetically similar, but are not
spelling variants of the query strings. For example, jppm2
obtained “matui ryousuke” (a male’s name in Japanese) and
“mattress queen” (a product name) for the query “matoriyo-
sika” (“Matryoshka doll”). Since jppm[1,3] have different
grouping features from jppm2, some obtained strings are
different among these functions. The results of jppm4 are
a subset of those of jppm2 because the grouping features
are common. Putting together obtained strings, phonetic
matching can be a viable solution to find potential spelling
variants. However, the obtained strings still need to be
filtered using further semantic analysis. In future work, we
intend to evaluate these functions in the context of a full IR
task.

4http://sourceforge.net/apps/trac/lemur/

5. CONCLUSION
In this paper, we have presented a set of new Japanese

phonetic matching functions. We do not attempt to address
the bigger issue of “word sense disambiguation” (WSD) and
synonyms, but rather present a simple approach to captur-
ing similar Japanese terms for ad hoc queries. A phonetic
matching function takes an input sequence of symbols and
converts it into a generic shortened sequence of symbols in
order to find as many fuzzy matches as possible. Some of the
generic codewords may gather too many matches, including
correct ones (the same meaning) and wrong ones (different
meaning). However, this approach can be used as a first
pass filter to find potentially relevant documents in large
Japanese document collections. This subset of documents
can then be further refined using relevance feedback or more
computationally expensive ranking metrics in subsequent
retrieval steps. In future work, we intend to investigate
the broader issue of WSD and synonyms using phonetic
matching, and explore other applications of these simple
matching functions.

6. ACKNOWLEDGMENTS
The first author was supported by JSPS KAKENHI

Grant-in-Aid for Young Scientists (B) 21700273. The second
author was supported by the Australian Research Council.

7. REFERENCES
[1] Amir, A., Efrat, A., and Srinivasan, S. Advances

in phonetic word spotting. In CIKM ’01 Proceedings
(2001), ACM, pp. 580–582.

[2] Deerwester, S. C., Dumais, S. T., Landauer,
T. K., Furnas, G. W., and Harshman, R. A.
Indexing by latent semantic analysis. JASIS 41, 6
(1990), 391–407.

[3] French, J. C., Powell, L., and Schulman, E.
Applications of approximate word matching in
information retrieval. In CIKM ’97 Proceedings
(1997), ACM, pp. 9–15.

[4] Karimi, S., Scholer, F., and Turpin, A. Machine
transliteration survey. ACM Comput. Surv. 43, 3
(2011), 17:1–17:46.

[5] Knuth, D. E. The Art of Computer Programming:
Volume 3. Addison-Wesley, 1973.

[6] Navarro, G. A guided tour to approximate string
matching. ACM Comput. Surv. 33, 1 (2001), 31–88.

[7] Navigli, R. Word sense disambiguation: A survey.
ACM Comput. Surv. 41, 2 (2009), 10:1–10:69.

[8] Okazaki, N., and Tsujii, J. Simple and efficient
algorithm for approximate dictionary matching. In
Coling Proceedings (2010), pp. 851–859.

[9] Slonim, N., and Tishby, N. Document clustering
using word clusters via the information bottleneck
method. In SIGIR ’00 Proceedings (2000),
pp. 208–215.

[10] Song, R., Zhang, M., Sakai, T., Kato, M., Liu,
Y., Sugimoto, M., Wang, Q., and Orii, N.
Overview of the NTCIR-9 INTENT task. In
Proceedings of NTCIR-9 Workshop Meeting (2011),
pp. 82–105.

[11] Zobel, J., and Dart, P. W. Phonetic string
matching: Lessons from information retrieval. In
SIGIR ’96 Proceedings (1996), pp. 166–172.


