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ABSTRACT

Building an efficient and effective search engine requires
both science and engineering. In this paper, we discuss the
ATIRE search engine developed in our research lab, and
both the engineering decisions and research questions that
have motivated building ATIRE.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content

Analysis and Indexing — Indexing methods; H.3.3 [Information

Storage and Retrieval]: Information Search and Retrieval
— Search process

General Terms

Algorithms, Performance

Keywords

Indexing, Storage, Efficiency, Pruning, Procrastination

1. INTRODUCTION

Information retrieval has been a hot research topic for decad-
es due to the need to quickly and accurately answer users’
queries across very large document collections, for example
the web. Building such an efficient and effective search en-
gine involves not only science but also engineering. Science
provides a range of algorithms for fast searching and better
ranking, and engineering is required so that systems can be
tuned to their optimal performance.

There are a number of existing search engines, both pro-
prietary and open-source, for example, Google, MG and
Apache Lucene. However, we have built a new search en-
gine called ATIRE from the ground up, to ensure we have a
fast robust baseline in order to compare new information re-
trieval technologies; and to conduct state-of-the-art informa-
tion retrieval research questions. The ATIRE search engine
is a cross-platform search engine — running on Windows,
Linux and Mac OSX — written in C/C++, with tradition-
ally non-interoperable sections hand-coded to avoid the use
of a third-party abstraction layer.

The questions we want to address are:

e How to build a fast indexer: It is very challenging
to build a fast indexer due to the complexity of how
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much work is involved. Our indexer is multi-threaded
with a unique pipeline methodology. We also imple-
mented a memory management subsystem in the in-
dexer for fast memory allocation. The indexer also
supports the merging of multiple indexes into a single
index.

e What is the most efficient structure for the in-
verted index? The full structure of the inverted in-
dex is rarely discussed in the literature, previous dis-
cussions have only discussed the techniques used for
index representation [34]. In this paper, we discuss
how we engineered our index structure.

e How to search efficiently without sacrificing ef-
fectiveness? We have been working on the optimisa-
tion of the term-at-a-time approach for query evalua-
tion and for future work this will be used as a baseline
for comparing various pruning algorithms; and com-
paring between term-at-a-time and document-at-at-a-
time processing.

e Does term proximity work? We question whether
term proximity and phrase searching are effective un-
der current evaluation methodologies.

e Other research questions? There are a number
of other research questions we intend to address in
future work: generalisation of our fusion of ranking
functions such as BM25 and PageRank; an exploration
into the juxtaposition between diversity and relevance
feedback; and fully distributed indexing and searching.

2. FAST INDEXING

The experiments and results shown were conducted on a col-
lection of standard collections from both INEX and TREC
forums, as described in Table 1. The experiments, with the
exception of ClueWeb09 collections, were conducted on a
dual quad-core Intel Xeon E5410 2.3GHz, DDR2 PC5300
9GB main memory, Seagate 7200RPM 500GB hard drive,
and running Linux with kernel version 2.6.30. The ClueWeb-
09 collection experiments were performed on an quad cpu
AMD Opteron 6276 2.3GHz 16-core, 512GB PC12800 main
memory, 6x 600GB 10000 RPM hard drives, and running
Linux with kernel version 2.6.32.

In order to produce an index quickly, the indexer in ATIRE
uses several optimisations and a unique pipeline procedure
based on the producer/consumer model.

The main optimisation that ATIRE uses when indexing
is the use of an internal memory management system that



Size Words

Collection Collection  Index % Documents Unique Total

Wall Street Journal [14] 517MB 64MB  12.4% 173,252 229,514 84,881,717

WT10g [4] 10GB 837TMB  8.4% 1,692,096 5,512,114 1,348,119,626

2009 INEX Wikipedia [29] 50.7GB 1.6GB  3.2% 2,666,190 11,874,077 2,341,271,195

WT100g/VLC2 [16] 100GB 71GB  7.1% 20,616,457 | 25,250,355 12,690,145,498

.gov2 [9] 400GB 12GB 3% 25,205,179 | 40,641,599  32,573,784,848

ClueWeb09 Category B 1.5TB 32GB 2% 50,220,423 | 96,298,556  71,319,689,402
ClueWeb09 Category A 12.5TB 503,903,810

(excl. 70% spam) 3.8TB 76GB 2% 150,954,279 | 127,651,335 189,731,940,667

Table 1: Summary of Collections Used

Memory Manager
System
ATIRE

Indexing Time (mm:ss)
14:18
10:37

Table 2: Indexing times for INEX 2009 Wikipedia
collection across four .tar.gz files with different
memory managers

requests large blocks of memory from the system and di-
vides this up as necessary, this overhead can be measured
by compiling without this intermediate manager and using
the system memory management. This optimisation alone
reduces the time taken to index the 2009 INEX Wikipedia
collection by one-third, as shown in Table 2, these times are
taken from a single run, with disk caches flushed between
runs, but are indicative of typical performance.

The indexing pipeline that ATIRE uses internally is unique
among open-source search engines. The pipeline consists of
a group of parallel producer/consumer inspired objects that
either deal with streams of data, or file-like objects that are
created from these streams. Each step in the pipeline is
focused on only performing one operation on the passed-
through data, minimising the amount of inspection per-
formed at each step.

These different stages in the pipeline can be combined
quickly and efficiently to allow new types of content to be
indexed. For instance, an existing object that un-tars, and
an object that un-gzips can be combined to allow the index-
ing of .tar.gz files.

Objects in the pipeline are allowed to perform secondary
functions, for instance, compressing the original document
and including it within the index (for post-processing such
as focused retrieval and snippet generation). The input
pipeline allows the indexer to filter out documents, such
as those identified as spam, and a best-effort attempt to
clean incoming data to negate any pre-processing of docu-
ment collections that might otherwise be necessary. This
is motivated by our underlying philosophy that the indexer
should be able to index any standard test collection out of
the box without any pre-processing.

At the end of the pipeline each document is indexed sep-
arately and folded into the overall index. This, combined
with the indexing pipeline, allow documents to be indexed
completely in parallel on a single computer.

The effect that parallel indexing has on the indexing time
is shown in Table 3. The times shown are from a single run,
with disk caches flushed between experiments, but are typi-
cal times experienced. This table shows that as the number

Number Input Files

(-tar.gz format) Indexing Time (mm:ss)

19:35
2 11:47
4 10:37

Table 3: Indexing times for INEX 2009 Wikipedia
collection with varying number of input files

Input Format Indexing Time (mm:ss)

tar 10:35
.tar.gz 10:37
.tar.lzo 10:09
.tar.bz2 19:10
File count 5:40

Extracted line count | 6:54

Individual files 64:30

Table 4: Indexing times for INEX 2009 Wikipedia
collection under various compression schemes across
four files

of files increases, and our ability to index these files in paral-
lel increases with it, that the total time to index is decreased.

This leads us to believe that our indexer is approaching
the point where indexing is bound by decompression time.
Indexing times for the INEX 2009 Wikipedia collection when
split across four files are shown in Table 4, with the time to
index the individual extracted files shown for comparison,
as a clearly input bound operation (probably by the ability
to open and close files). We are pleased to notice that we
have already crossed the point at which we take less than
twice the time as simply counting the number of files within
the tar file. We also show the total time taken to count the
number of lines in extracted files as a target to aim for. We
have not yet tuned the number of threads our indexer uses
against the number of cores in the machine.

The ATIRE search engine defines a word to be a sequence
of characters or numbers, where a character or number is de-
termined by the unicode specification. We currently assume
that input is in UTF-8 format, and can process encoding er-
rors that may be encountered such as missing continuation
bytes. The input is decomposed, normalised and lower-cased
following the unicode specifications. ATIRE supports CJK,
and includes chinese segmentation, and has been used in ex-
periments at NTCIR. Currently ATIRE does not support
entities such as &aacute; and ignores any processing direc-
tives contained within the document, except for comments.
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Figure 1: The overall structure of the index file

ATIRE performs all indexing in memory on a single ma-
chine, although distributed indexing is being investigated.
To work around this limitation, ATIRE also includes a tool
to combine previously generated indexes with minimal mem-
ory overhead. By processing each indexed term separately
the merge tool only requires enough memory to contain the
merged postings list, and to maintain the first level of the
dictionary structure described below. This allows the in-
dexing of collections that otherwise could not be indexed on
commodity hardware, for example the ClueWeb09 Category
A collection.

3. INDEX STRUCTURE

The ATIRE search engine generates a single index file that
consists of multiple distinct sections. By restricting the in-
dex to a single file we minimise the likelihood of a user not
having all parts of the index at search time.

The first few bytes of the index file contain the string
ATIRE Search Engine Index File\n\0\O, so that the file
type can be identified by a person using the command head
-n 1. A diagrammatic overview of the index structure is
shown in Figure 1.

The first section of the index file is optional, and contains
the compressed original documents in the collection. This
feature allows for, among other things, focused retrieval and
snippet generation. The location of each compressed docu-
ment is stored in a special term inside the index.

The second section of the index file contains the postings
lists for each of the terms. Traditionally postings lists are
stored as a sequence of (docid, term frequency) pairs, or-
dered by docid. In the ATIRE search engine we instead sort
on term frequency first [26, 27], then for each term frequency
we store the docids in a difference encoded list, terminated
with a 0. This ordering on term frequencies first is referred
to as impact ordered.

The ATIRE search engine supports the use of precom-
puted quantised impact scores, where instead of storing the
term frequency values we instead precompute the RSV for
each term with respect to each document after indexing is
complete [1].

In order to better compress these numbers, they are quan-
tised into integers using the Uniform method [1], which pre-
serves the original distribution of numbers, so no additional
decoding is required at query time [23, 1]. In the ATIRE

|Impact|Docid|Docid| | 0] |Impact|Docid| 0 | |

Comrepessed

|1 | Postings |
——v

Compression Scheme

Figure 2: The structure of a postings list
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Figure 3: The structure of a vocabulary leaf

search engine, these values are scaled to 1-255, so that they
may be stored in one byte.

Storing the postings lists in this impact ordered format
can be thought of as a form of compression, as fewer inte-
gers need be stored. In the worst case where every impact
value is used, then in an impact ordered format, D + 510
integers need to be stored (due to scaling, quantisation and
list termination), as opposed to 2D, where D is the number
of documents that contain the term.

We refer to each list of docids for each impact value as a
quantum. Each quantum is stored as a difference encoded
list, and the entire impact ordered list is then compressed.
The ATIRE search engine is capable of compressing postings
lists using different compression schemes (carryover 12, elias
delta, elias gamma, golomb, none, relative 10, sigma, simple
9, and variable byte) to minimise the disk space taken by the
index. By default, however, ATIRE uses variable byte com-
pression. A diagrammatic representation of this structure is
shown in Figure 2.

The third section of the index contains the vocabulary
structure that holds all the terms that have been indexed.
By default, the ATIRE search engine uses the embedfized al-
gorithm [18] to store vocabulary terms since this algorithm
provides a good trade-off between storage space and lookup
time. The embedfized algorithm stores the vocabulary in a
two level B-tree structure. The first level of which contains
the unique first four character prefixes of terms in the vo-
cabulary. Each leaf node in the second layer contains the
suffixes of those terms that share the common prefix of the
parent node. In essence, it is a form of front-encoding that
can be searched efficiently.

As well as storing terms in the vocabulary, a number of
variables are also required for each term; they are collection
and document frequencies used for ranking purposes, loca-
tion of the postings list stored on disk and the list length
used for retrieval of the postings from disk. These variables
are stored in the leaf nodes of the vocabulary B-tree.

Aside from these variables associated with each term, ex-
tra variables are introduced for each term: the postings_length
holds the compressed length of the postings list; the im-
pacted_length variable stores the number of integers in the
decompressed postings list. These values allow our decom-
pression routines to take the form “decompress n integers
from this pointer”, and by identifying the longest decom-



pressed postings lists (which is stored in the file footer), al-
locate a single buffer for decompression purposes at search
time.

The suffixes for each term inside the leaf node are stored
as a null terminated set of strings at the end of the leaf node
block. For this reason the suffiz_position variable identifies
where in this block of suffixes the suffix for this individual
term begins. The local-maz_impact holds the maximum im-
pact value for the term, and is used for early termination
and pruning of query evaluation [26, 27]. Figure 3 shows a
diagrammatic layout of these variables and the number of
bytes assigned to them.

As a further space saving we can store the postings lists
directly in the vocabulary structure for terms that occur ei-
ther once or twice in the collection. This can be done by
re-purposing some of the variables in the vocabulary leaves,
much like a union in the C programming language. How
to process these lists can be determined at run time by ex-
amining the document frequency for the term. It not only
saves the storage space for the postings, but also eliminates
the extra storage needed for the impact header and postings
list header.

The ATIRE search engine has the option of loading in-
dexes completely into memory at search time. In the case
that the index is not loaded completely into memory, the
vocabulary root is loaded into memory, and during query
evaluation is binary searched. The relevant term leaf is
then loaded into memory and binary searched to find the
term details, then the document frequency is checked. This
technique is a form of pre-fetching [20], and saves an extra
disk seek and read. Further details of this method are to be
published at a later date.

Lastly, the index file contains a footer that contains vari-
ables that describe the index, and are used to minimise
the number of memory allocations needed when performing
query evaluations, such as the length of the longest postings
list. These variables are designed to allow the ATIRE search
engine to perform no dynamic memory allocation at search
time. Certain variables that are associated with the index
that are known at indexing time, such as whether the im-
pact values are pre-calculated RSV scores, are stored within
the index itself as special terms.

As shown in Table 1, the ATIRE search engine is capa-
ble of producing compact indexes that are a fraction of the
size of the original collection, the rate of which depends
largely on the ratio between indexable and non-indexable
content. The ClueWeb09 Category A index was constructed
with spam filtering set to discard the 70% most spammiest
documents, as suggested by Cormack et. al. [10], with the
number of documents included in the index shown in brack-
ets in Table 1.

Table 5 shows some comparisons for indexing and search-
ing times across the ClueWeb09 Category A and B collec-
tions. Each index was constructed without quantisation and
searching was performed using a single thread, with none of
the optimisations discussed below, across queries 101-150.

4. QUERY EVALUATION

There are two main query evaluation methods used in infor-
mation retrieval systems, document-at-a-time and term-at-
a-time processing. The document-at-a-time approach com-
pletely evaluates one document at a time before moving
to the next, while the term-at-a-time approach process one

Index Search

Collection Time Time MAP
(hh:mm:ss) | Per Query

ClueWeb09 Cat. B 4:10:20 11.9s 0.1216

ClueWeb09 Cat. A | 20:30:38 30.7s 0.1028

(excl. 70% spam)

Table 5: Comparison of timings for indexing and
searching across the ClueWeb09 collection

query term at a time.

There are advantages and disadvantages to the two ap-
proaches; (1) term-at-a-time requires an array of interme-
diate accumulators (one for each document) to hold the
accumulated results between the evaluation of each term,
while document-at-a-time only needs to hold the top n doc-
uments (where n is the number of documents to return).
Turtle & Flood [33] state that document-at-a-time is more
cost efficient than term-at-a-time based on the assumption
that the intermediate accumulators are stored on disk. They
state that the performance of the two methods would be
equivalent if the accumulators could be stored in memory.
(2) Document-at-a-time requires a random scan of post-
ings lists for all the query terms in order to fully evaluate
a document. This scan takes time especially if all post-
ings lists cannot be held in memory. Skipping [21] and
blocking [22] were introduced to allow pseudo-random ac-
cess into postings lists. However, there is an extra overhead
to build skipping and blocking, and the index size increases.
Broder et al. [6] addressed this random scan problem by
introducing a new document-at-a-time query processing al-
gorithm called WAND which can smartly skip some unnec-
essary postings for fast scanning. Ding & Suel [12] further
extended the WAND algorithm and introduced Block-Max
WAND which can further skip more unnecessary postings.
The skipping criteria for both of the algorithms are based
on the runtime calculation of current thresholds of the max-
imum impacts for all query terms. (3) Postings lists for
document-at-a-time must be longer because the postings
lists are sorted on doc id and are not impact ordered. (4)
Intuitively, document-at-a-time is more suitable for conjunc-
tive search while term-at-a-time for disjunctive search.

Most criticisms aimed at term-at-a-time approach are to-
wards the requirement of the intermediate accumulators and
the need to sort the accumulators to return the top docu-
ments. However, we believe that it is more difficult to man-
age the memory for all postings lists and efficiently random
scan the postings lists for document-at-a-time. We are not
concluding that term-at-a-time is better than document-at-
a-time, or vice versa. Instead we have built a baseline using
the term-at-a-time approach in the ATIRE search engine
and will use this baseline to compare and investigate the
document-at-a-time approach in future work.

The rest of this section discusses how the issues associate
with the term-at-a-time approach are addressed in ATIRE
for query evaluation.

4.1 Ranking Functions

By default, ATIRE uses a modified BM25 ranking function.
This variant does not result in negative IDF values * and is

'We thank Shlomo Geva for this contribution.



defined as:

N (k1 + 1) tfeq

)R CRTETP ¢m) wv

g

RSVy = Y log (

teq

Here, N is the total number of documents, and df; and
t fta are the number of documents containing the term ¢ and
the frequency of the term in document d, and Lg and Lgug
are the length of document d and the average length of all
documents. The empirical parameters ki1 and b have been
set to 0.9 and 0.4 respectively by training on the INEX 2008
Wikipedia collection.

There are a number of other ranking functions supported
in ATIRE as well, for example: Bose-Einstein GL2, Diver-
gence from randomness, Terrier DPH and DFRee, Language
Models, and Pregen [30].

4.2 Pruning

The processing (decompression and similarity ranking) of
postings and subsequent sorting of accumulators can be com-
putationally expensive, especially when queries contain fre-
quent terms. Processing of these frequent terms not only
takes time, but also has little impact on the final ranking
results. Postings pruning is a method to eliminate unnec-
essary processing of postings and provide partial scores for
top-k documents. Postings pruning can be done at either
index time or query time. Pruning at index time reduces
the physical size of the index file [8, 25, 5]. However it is a
lossy compression; pruned postings are not kept for access
at query time.

Pruning at query time does not modify the index, but
prunes postings at run-time during query evaluation. It al-
lows different criteria at query time to be applied to keep
track of top k& documents. A number of pruning methods
have been developed and proved to be efficient [7, 15, 24,
21, 32, 27, 1, 31, 17, 19]. ATIRE supports both pruning at
index time and at query time, and pruning at query time is
discussed in this section.

In ATIRE, the heapk pruning algorithm [17, 19] is used
to keep track of the top-k documents. There are two stages
in the algorithm. The first stage is the initialisation stage,
as shown in Algorithm 1. N is the number of documents
in the collection. top_k is the number of top documents
(specified as a command-line parameter) to be returned.
result_list keeps track of the number of current top can-
didate documents during evaluation. acc is the accumulator
array which hold the intermediate similarity scores for each
document. heapk is an array of pointers which will be used
by the minimum heap to keep track of current top docu-
ments. top_bitstring is an array of bits (one bit for each
document) to track if the document is marked as one of the
top candidate documents.

Algorithm 1 Heapk Initialisation
Require: N > 0 and lower_k > 0

1 N <« total_documents_in_collection
: top_k = lower_k

: result_list =0

acc < new array[N]|

heapk < new array[N]

: top_bitstring < new array[N]

DU W

The second stage is the update stage, shown in Algo-
rithm 2. There are four steps. First (lines 1 to 3), the score

is updated for the accumulator. Second (lines 4 to 12), if
the number of the current top candidate documents is less
than the required (result_list < top_k), it means the heap is
not full. A new document (if old_value = 0) can be simply
added to the heap and the corresponding bit is set. When
the heap is full (result_list = top_k), it is required to build
the minimum heap on the heapk array. Third (lines 13 to
14), if result_list is no less than top_k and the current doc-
ument is marked as set (top_bitstring[index]), it means the
document which is already in the top gets updated. Updat-
ing one of the top document could violate the properties of
the minimum heap. It is necessary to call min_update() to
partially fix the heap. Last (lines 15 to 18), if result_list is
no less than top_k and the score is greater than the smallest
score in the heap (which is heapk[0]), it means the docu-
ment, which was not in the top, should now be inserted into
the top to replace the smallest score. The bit of the smallest
document in heap should be unset. The new document is
inserted into the heap by calling min_insert.

Instead of repeatedly re-building the minimum heap for
update and insertion operations, two special functions are
implemented for efficiency optimisation. Every time one of
the top candidate documents gets updated, the min_update()
function is called. It first linearly scans the heapk array to
locate the right pointer and then partially traverses down
the subtree of the pointer for proper update of the mini-
mum heap. The linear scan is required because the mini-
mum heap is not a binary search tree. Every time a new
document is going to be inserted into the minimum heap,
the min_insert() function is called. It first replaces the doc-
ument with the smallest score and then partially traverses
down the tree for proper update of the minimum heap.

Algorithm 2 Heapk Update

Require: index > 0 and score > 0
1: old_value < get the current value of acclindex]
acclindex] < acclindex] + score
new_value < get the current value of acclindex]
if result_list < top_k then
if old_value = 0 then
heapk[result_list] < address of accl[index]
result_list < result_list + 1
set the bit of top_bitstring[index]
end if
10:  if result_list = top_k then
11: build the minimum heap on heapk
12:  end if
13: else if top_bitstring[index] is set then
14:  min_update() to update the heapk
15: else if new_value > the value of heapk[0] then
16:  unset the bit of top_bitstring[heapk|0]]
17:  min_insert(acclindez])
18:  set the bit of top_bitstring[index]
19: end if

The value of lower_k can be specified from command-
line, used to tell the heapk pruning algorithm how many top
documents to keep track of.

The performance of the heapk pruning algorithm was in-
vestigated in INEX 2010 and the results showed that the
algorithm is not only CPU cost efficient but also effective.
For details of the experiments and results, see our previous
work [17].



4.3 Accumulator Initialisation

The term-at-a-time approach uses a number of accumula-
tors, usually as a static array, to hold the intermediate ac-
cumulated results for each document. For large collections,
there can be a large number of accumulators and it takes
time to initialise them. One way to avoid this problem is to
use few accumulators allocated using dynamic search struc-
tures [24, 21]. However, dynamic structures require more
memory space for each accumulator. For example, a bal-
anced Red-Black tree structure [11] uses about 20 and 32
bytes for each accumulator on 32- and 64-bit architectures
respectively. Compared with only 4 bytes required in a static
array, only 20% for 32-bit (12.5% for 64-bit) or less of the
total number of accumulators should be allocated, other-
wise the Red-Black tree structure uses more memory than
a static array.

For ATIRE, a new efficient accumulator method has been
developed. It not only keeps tracks of the top candidates
(using the heapk algorithm) but also updates the less im-
portant accumulators. This allows initially low scoring can-
didates be to among the top ones at the final stage. The
method uses two static arrays. One array is used to hold
all accumulators (one for each document) and the other to
hold a number of flags. Every flag is associated with a par-
ticular subset of the accumulators, indicating the initialisa-
tion status for that set of accumulators (either initialised
or not). Essentially, we turn the one dimensional array of
accumulators into a logical two dimensional table as shown
in Figure 4. The dimension of the table is defined by height
and width, and the number of the flags is the same as the
height of the table.

Accumulators

Flags ]

Height

Ol

Width T

Figure 4: The representation of the accumulators in
a logical two dimensional table

As shown in Algorithm 3, the width of the table has to
be a whole number (at least 2), and the height can be cal-
culated dynamically by referencing the width and the size
of the document collection. Extra accumulators (shown as
padding in the algorithm) are used to fill the gaps when the
number of accumulators is not evenly divisible by the height.
The allocation of the extra accumulators are so that we can
perform block operation on whole rows. The number of ex-
tra accumulators required is usually small (the worst case is
width — 1).

The update operation for the accumulators is shown in

Algorithm 4. First, the index of an accumulator is divided to
locate the logical row of the accumulator. Second, the status
of the row flag is checked and two outcomes can happen; (1)
If the flag has a value of 0, the associated accumulators in
the row are initialised and the new value is then added to
the accumulator. (2) If the flag has a value of 1, the new
value can be simply added to the accumulator.

Algorithm 3 Accumulator Initialisation
Require: width > 2

: N < total_documents_in_collection

: height < (N/width) + 1

: init_flags < new array|height|

: initialise init_flags

: padding < (width = height) — N

acc + new array[N + padding]

DU W

Algorithm 4 Accumulator Update
Require: doc_id > 0 and doc_id < N
row <« doc_id/width
if init_flags[row] == 0 then
init_flags[row] < 1
initialise the row of the accumulators in acc
end if
accldoc_id] < accldoc-id] + new_rsv

In order to find the optimal solution for the width of the
table, a mathematical model for the algorithm was described
and a simulation was performed. For a detailed discussion of
the mathematical model, the experiments and results, please
see Jia et al. [19].

4.4 Quantum At a Time

Instead of the traditional approaches of term-at-a-time and
document-at-a-time, we propose a new query evaluation ap-
proach called quantum-at-a-time. Before the start of a query
evaluation, all the quanta of the query terms are sorted on
their impact values so that the highest impact quanta can
be evaluated first and then the next highest, and so on until
some of the remaining quanta cannot cause a change to the
top-k documents.

The quantum-at-a-time approach is a mixture between
term-at-a-time and document-at-a-time. This new approach
is similar to score-at-time [2, 3] and Block-Max WAND [12].
The differences are that term ranks are used in score-at-a-
time instead of the impact values to sort the quanta, and a
block in Block-Max WAND can have postings with different
impact values and Block-Max WAND is for document-at-a-
time processing.

The quantum-at-a-time approach is targeted for efficient
and effective pruning of postings, and better parallel pro-
cessing of postings lists on multi-core architectures. We will
discuss this work in future publications once we have com-
pleted it.

5. TERM PROXIMITY

ATIRE does not currently support positional indexes. We
have built several search engines in the past and our ex-
periences suggest that positional indexes are not effective
under current academic IR evaluation methods that use a



binary relevance model. If the precision improvement of a
positional index cannot yet be demonstrated in a recognized
forum such as TREC or INEX then it is difficult to justify
having one.

Our informal reasoning for this is as follows. If the user
enters a two word phrase then for a document to contain that
phrase it must also contain both words. For a document to
contain that phrase many times it must also contain both
those words many times. That is, a document that would
rank highly for the phrase would also rank highly for both
words not as a phrase — and typically they do.

Further, examining the precision-at-1 (P@1) score for both
approaches; if phrase searching is more effective than term
searching then a specific set of conditions must be met: (1)
the term search must not put a relevant document at po-
sition 1, and (2) the phrase search must do so. Simply re-
placing one relevant document with another has no effect on
precision; and nor does replacing a non-relevant document
with another non-relevant document.

The circumstances necessary for an improvement are hard
to meet; but we accept that they can be so. If both words
in the phrase are seen frequently in a document, but never
as a phrase, then phrase searching should increase precision
— in this case the phrase acts as a noise filter. An example
of such a query is “The Who”. A second example is when
all the words are seen but not as the phrase. Again the
phrase acts as a filter. An example of this can be seen when
searching for the musician “Lisa Lisa” on the Apple iTunes
Store.

We believe these examples are pathological and can be
handled by storing n-grams in the vocabulary and welcome
an evaluation forum running a phrase search track. Such an
experiment was conducted at INEX 2009 but was inconclu-
sive (“competitive, but not superior” [13]).

6. RELEVANCE FEEDBACK AND DIVER-
SIFICATION

The ATIRE search engine currently supports the use of
pseudo-relevance feedback. Pseudo-relevance feedback makes
the assumption that the top n returned documents are rele-
vant to the query and inspects those documents to identify
new and relevant keywords.

In ATIRE we use the KL-divergence for terms inside these
top documents to identify the terms which are more likely to
be used inside these top documents than would be expected
by examining the entire collection. These identified terms
are then added to the original query according to Rocchio’s
algorithm [28]. Terms that were added to the query with
this method are given an equal weighting with, and may
duplicate, the original terms. The ATIRE search engine al-
lows for other methods for term selection to be incorporated,
although currently only KL-divergence is supported.

Although we perform relevance feedback by identifying
those terms that are used more frequently in relevant doc-
uments than one would expect, it can be thought of as a
result of clustering the documents on topic. Relevance feed-
back promotes those documents that belong to clusters that
contain documents that have been identified as relevant.

When a search engine is presented with an ambiguous
query, such as “apple”, then it can employ diversification
in order to help maximise the usefulness of the returned re-
sults to the user. Diversification aims to select documents

that are related to different possible interpretations of the
original query (continuing the above example: the computer
company, fruit, record company, etc.) so that each interpre-
tation is given weight according to its likelihood.

One such method for diversification is to cluster the doc-
uments by topic, and then select documents from clusters
that contain no previously selected documents. Currently
the ATIRE search engine does not explicitly diversify re-
sults lists, but this is an active research area for us.

When presented as results of clustering documents, rel-
evance feedback and diversification are juxtaposed against
each other. Each method uses an opposing criteria to se-
lect documents, with diversification exploring cluster-space,
and relevance feedback exploiting it. However, both of these
ideas seem to improve the results.

7. BUT WAIT THERE’S MORE!

In addition to all the above discussed features, the ATIRE
search engine also supports: stemming including Krovetz
and Porter as well as soundex and metaphone; topsig; snip-
pet generation and focused retrieval.

The ATIRE search engine can natively read assessment
formats, evaluate queries against a large number of metrics,
and produce runs for evaluation forums.

8. CONCLUSION AND FUTURE WORK

In future work we aim to change the storage format of post-
ings lists in order to allow quantum-at-a-time processing dis-
cussed earlier in Section 4.4. In order to do this, we need to
identify where each quantum is stored within a postings list,
which will require the use of an impact header. This header
structure is in development and we aim to also include sup-
port for incremental index updates.

With the ATIRE search engine, we have tackled optimi-
sation of the term-at-a-time processing approach in several
areas; (1) The index structure has been optimised. An im-
pact header is created for each postings list for easy ma-
nipulation of those lists (sorted on impact values). (2) The
heapk pruning algorithm is used to keep track of the top-k
documents, thus eliminating the need to sort accumulators.
(3) The cost of the accumulator initialisation has been min-
imised by using the logical two dimensional table.

In future work, we will use this baseline to compare with
the document-at-a-time and quantum-at-a-time approaches.
We will also continue our experiments in relevance feedback,
diversification, focused and snippet retrieval in INEX. We
hope one of the evaluation forums will run term proximity
in the near future.
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