
Galago: A Modular Distributed Processing and Retrieval
System

[A Retrospective]

Marc-Allen Cartright, Samuel Huston, and Henry Feild

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

irmarc,sjh,hafeild@cs.umass.edu

ABSTRACT
The open source IR community must address the new needs of the
current search engine landscape. While it is still possible for an
individual to perform effective research or run a small to moderate-
sized search engine on a single machine, the scope of search engine
applications has moved far beyond these parameters. The exciting
new frontiers of information retrieval lie now at the extremes: either
the system and available resources are far more constrained than a
desktop (as in mobile phones and tablets), or resources are expected
to be available in quantities orders of magnitude larger (as in web-
scale systems).

To inform the decisions in designing the next-generation of open
source search engines (OSSEs), we present a retrospective assess-
ment of the Galago search engine, an open source retrieval sys-
tem developed at the University of Massachusetts Amherst. We
have successfully deployed Galago over large clusters for both in-
dexing and retrieval. At the other end of the spectrum, we have
also successfully installed Galago on Android-based smart-phones
and tablets, providing search capabilities over the personal data —
tweets, social media posts, blog-feeds, emails, texts, browsing his-
tory, etc.— stored on one’s cell phone.

These experiences have provided us with information that we
feel is essential to communicate to all potential designers of open
source search engines. In this paper, we discuss the aspects of
Galago that we believe are worthy of carrying forward into the next
generation of open source retrieval systems. Conversely, we also
discuss the roadblocks encountered, both in terms of adoption by
the larger research community and the difficulties in learning to use
the system effectively. We hope that this retrospective will inform
the architects of the next generation of open source retrieval sys-
tems.

Keywords
Galago, TupleFlow, retrieval system, search engine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR 2012 Workshop on Open Source Information Retrieval
August 16, 2012, Portland, Oregon, USA
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Information Storage and Retrieval-
Systems and Software[Distributed Systems]; H.3.0 [Information
Systems]: Information Storage and RetrievalGeneral

General Terms
Information Retrieval, Distributed Indexing

1. INTRODUCTION
The Galago1 search engine is currently being developed at Uni-

versity of Massachusetts Amherst as a generational successor to
Indri.2 Indri emphasized two important factors: 1) the union of
language models and inference networks and 2) processing speed.
This model worked extremely well for its contemporary genera-
tion of research, and many groups used the software to produce a
large body of published research. Galago has been designed with
different goals in mind, to react to the next generation of research
needs: 1) interoperation with a distributed processing environment,
and 2) a modular, flexible processing model that allows drop-in
components in virtually every step of the score calculation during
retrieval. While we believe Galago has met these goals, to date
Galago has not received the widespread adoption that Indri has. In
this paper we take a look back at our own experiences with Galago
in an attempt to learn as much as we can about the good, the bad,
and the hopeful aspects of Galago.

We present our assessment as follows. When discussing positive
aspects of Galago that we believe should be carried forward to the
next generation of OSSEs, we present it as an affordance3. We then
discuss issues we encountered when using Galago, as two-part as-
sessments. We begin with a problem statement, which describes
the specific issue we encountered with the system. We conclude
the issue with the lesson that is the general rule or observation we
hypothesize from our specific instance. We hope that this informa-
tion will aid future system implementors by helping them to evolve
the nascent affordances we found, and avoid the pitfalls we encoun-
tered.

1http://www.lemurproject.org/galago.php
2http://www.lemurproject.org/indri/
3Wikipedia states an affordance as a quality of an object, or envi-
ronment, which allows an individual to perform an action. We use
that definition here.

http://www.lemurproject.org/galago.php
http://www.lemurproject.org/indri/

2. AFFORDANCES OF GALAGO
Despite the lack of widespread adoption, we believe Galago is a

powerful retrieval system that emphasizes several elements that all
future systems would do well to have. We focus on these elements
here, and provide evidence in support of each claim.

2.1 Scoring Model Representation
Galago continues the use of a tree-based model from Indri, how-

ever several important changes make Galago’s implementation much
more powerful than Indri’s. The Inference Network model de-
scribed by Turtle and Croft [15] and implemented in Indri, provides
a clean graphical way of describing a retrieval model. Addition-
ally, it does so in a purely declarative way—the nodes in a query
tree describe what they represent, but not how to materialize that
information at retrieval time. Indri implemented this framework in
a more formalized way by combining the Inference Network with
Language Models. This proved to be a successful combination, as
Indri is still in use as an active research system today, over 8 years
after its initial development.

However, several issues limit the capabilities of Indri. The query
language is difficult to update dynamically, therefore end users are
limited to the constructs already defined in the language. Addition-
ally, using the Inference Network requires adherence to a proba-
bilistic interpretation of scoring documents. Many retrieval mod-
els do not produce values that can be considered probabilistic (the
vector space model is an obvious example of this situation). Imple-
menting these functions is not feasible without significant change to
the code base and a thorough understanding of the scoring pipeline
in Indri.

Galago solves these issues by generalizing away from a spe-
cific philosophy to a more general notion of a query tree. The
only restriction in this model is that upon evaluation for a partic-
ular document, the tree reduces to a final value that is produced at
the root node of the tree. Figure 1 shows the simple query hubble
telescope achievements in the query tree representation. The
#combine node at the top, when evaluated, produces a scalar value
based on its parameters and the current document. We now dis-
cuss two powerful ideas that form the core of the query tree model:
operators and traversals.

#combine

hubble telescope achievements

#feature:dirichlet:mu=1500

Figure 1: A simple query, represented as a tree. The middle
layer of feature nodes in this query tree each convert frequency
information about a term into a Dirichlet-smoothed probabil-
ity.

Operators
An operator is a function over child nodes in the query tree that

can produce a scalar upon evaluation of a document. In Figure 1,

the only operator shown is #combine, which performs a linear
combination of the child nodes of the operator. This may seem
like a simple act, however, when generalized, the use of operators
in this recursive manner means that given the proper operators, we
can represent any arbitrarily complex function. In practice, we use
operators to implement smoothing and scoring functions over raw
terms, combine scores, and implement boolean match operations
(and filtering and negated filtering operations). As we will see in
the next section, operators can also work in conjunction with traver-
sals to perform transformations across the entire tree to represent
larger operations.

Traversals
A traversal is an operation over the query tree that transforms

the tree in some way. Galago internally uses traversals extensively
to annotate its query tree to prepare it for processing, check the
correctness of submitted queries, optimize query execution [2], and
rewrite the query tree, to name a few functions.

Operators and traversals are useful in isolation, but when you
combine them together, you can implement highly expressive lan-
guage constructs in a simple way. As a straightforward example,
Figure 2 depicts the transformation of a small query tree under the
#sdm operator. In this case the operator serves as a placeholder
to indicate that the SDM-Traversal to expand the contained query
using the Sequential Dependence Model described by Metzler and
Croft [9]. The decomposed view of retrieval models afforded by
query trees, in conjunction with operators and traversals, creates a
powerful mechanism for implementing retrieval models very effi-
ciently. We have additionally used combinations of operators and
traversals to implement the Relevance Model [8], the field-based
PRMS model [7], BM25 scoring [11] and it’s field-based variant
[10], to name a few of the implemented models. Each model was
simple to implement and test in Galago, and is now part of the stan-
dard distribution of the system.

In this way, we can encapsulate a well-defined model in a short-
hand form in the query language. A similar idea, known as options,
has been a popular notion in the reinforcement learning community
for over a decade [14]. An option is created to encapsulate a chain
of actions that the system has deemed useful enough to treat as a
primitive action. This allows increasing abstraction as the system
progresses. In a similar fashion, as new operators and traversals are
added to Galago, the query language can grow to include higher-
level concepts as they are deemed useful enough to add.

2.2 Generalization of Distributed Processing
Galago comes packaged with its own distributed processing sys-

tem, called TupleFlow. TupleFlow can be thought of as a MapRe-
duce system, in that every process can consist of a map or reduce
operation. The most well-known open-source implementation of
MapReduce is Hadoop, maintained now by the Apache Software
Foundation4. Hadoop has grown to be a field-tested implementa-
tion that has been scaled to clusters of several thousand machines
to simultaneously support dozens of online users 5. However, one
place that we considered TupleFlow to far surpass Hadoop MapRe-
duce was the option of multiple inputs and outputs for a processing
stage. Hadoop has excellent support for single-stream input and
outputs to processing stages, but adding even a single extra stream
as input to the system can prove to be a test of patience. Conse-
quently, implementing an ordered join of two or more streams, a
popular operation in data processing, is an onerous task even for
experienced Hadoop users.
4http://hadoop.apache.org/mapreduce/
5http://research.yahoo.com/news/3374

http://hadoop.apache.org/mapreduce/
http://research.yahoo.com/news/3374

achievementstelescopetelescopehubble

achievementstelescopetelescopehubble

0.8

0.15

0.05

#od #od

#uw #uw

#combine

#combine

#combine

#combine

#sdm

SDM-Traversal

hubble telescope achievements

hubble telescope achievements

#feature:jm
#feature:jm#feature:jm

#feature:jm#feature:jm

Figure 2: The expansion of the Sequential Dependence Model using a traversal.The layer of feature nodes in this query tree each
convert frequency information about a term or a window into a Jelinek-Mercer-smoothed probability.

FileSource

Parser Tokenizer Stopper Stemmer

Postings extractor

Word counter

Fields extractor

Document name
extractor

Sorter

Sorter

Sorter

Sorter

Extent
renumber

extentsRenumber

Length
counter

collectionLengthStageDocument
numberer

documentNumbering

Postings
renumber

postingsNumberer

Document
lengths
writer

documentLengths

Positions
list

writer

mergeIndex

Extent
list writer

writeExtents

Manifest
writer

mainManifest

parsing

Document
name writer

Figure 3.15. A TupleFlow computation graph for building a traditional, positions-
based text index. Small boxes are steps, large boxes are stages, and gray boxes
indicate stages that can be replicated.

either an error checkpoint file or no checkpoint at all. This can result in a substan-

tial time savings, especially when developing a new kind of stage. When using this

feature, users do need to be careful that code changes do not alter the results of the

computation that has already been completed.

81

Figure 3: An example of indexing a collection using TupleFlow (generated by Trevor Strohman [12]).

Conversely, using multiple streams in TupleFlow requires indi-
cating the extra connections in the configuration, and opening the
stream in the processing stage, which requires only a single func-
tion call with the pipe name. Figure 3 shows the original indexing
pipeline of Galago. The innermost boxes are steps, which are en-
closed in stages. A single stage is run on a single machine. Shaded
stages are replicated, meaning many instances of the same stage,
with different input, are executed at the same time. A full explana-
tion of the pipeline is beyond the scope of this paper. However, one
can immediately see that several distinct stages can execute inde-
pendently provided the prior input stage has completed. TupleFlow
can analyze this dependence graph and execute these stages as soon

as they are ready. A standard Hadoop implementation would re-
quire manual ordering of these stages, which would typically run
serially without programmer intervention. After several years of
experience with TupleFlow, we all agree that moving towards a
general data processing model is beneficial for code reuse, higher-
level reasoning, and processing. Trends in industry seem to agree
— these ideas are being implemented as well in large-scale data

processing systems, such as MR26, Spark7 and Flume8. Although
TupleFlow has not been widely adopted to date, we are fully aware
of its capabilities, and it is clear to us that the idea of a higher-order
distributed processing paradigm is essential to efficient research in
the future of IR.

2.3 Pluggable Components
As mentioned previously, one of the original goals while build-

ing Galago was to allow users to easily extend the functionality.
While not all components can be easily extended, many can, in-
cluding parsing new corpus formats, query operators, query tree
traversals, scoring regimes, and stream processing steps with Tu-
pleFlow. Using Java, developing pluggable components is easy
since extensions can be packaged in completely separate archive
(JAR) files. For example, to run Galago with a user defined query
operator, the extension’s JAR file is placed on the Java class path
and the user tells Galago which class to associate with the operator
at run time—and that’s it. As all of the code is developed in Java,
we have a guarantee that an external component developed else-
where will run as intended on any system. In our own experience,
external development has often provided an excellent development
path for new components that we did not yet want to include in the
main distribution. New components are developed and tested dur-
ing research, when code is often not at its best. After the research
is complete, we can assess the utility of the new components, and
decide if we want to include them in the trunk of the source code.
Often times integration into the main trunk provides a good oppor-
tunity to refactor the code into a more suitable form as well.

Finally, pluggable components allow users to contribute stan-
dalone extensions—not patches that need to be applied to the core
code base—that can then be made publicly available and used with
other extensions. Likewise, entire distributed processing programs
can be made without the need to modify any of the core TupleFlow
code, just as with Hadoop.

3. PROBLEMS ENCOUNTERED
In this section, we reflect on some of the issues we encountered

while developing Galago and the lessons that we learned from the
experience. Our hope is that these lessons apply not just to Galago,
but OSSEs in general.

3.1 Steep Learning Curve
Problem: Learning to use Galago was often difficult and con-

fusing. Several members of the CIIR have used both TupleFlow
and Galago extensively in their research [1, 2, 3, 4, 5, 6, 13]. All
users find the system useful and can effectively implement new
components to add to the system in a short amount of time, of-
ten times within an afternoon. Unfortunately, the road to reach this
point of expertise was long and complicated. The first two users
spent almost a year learning the nuances of the system before they
could effectively use it in research. Later adopters required less
time as the early adopters were able to communicate the important
aspects of the system effectively, saving new users several months
of fumbling through a labyrinth of code. Had the system been better
documented, we believe that would have led to the early adopters
saving weeks, if not months, of time learning the details of Galago
and TupleFlow.

6http://www.cloudera.com/blog/2012/02/mapreduce-2-0-in-
hadoop-0-23/
7http://www.spark-project.org/
8https://cwiki.apache.org/FLUME/

Lesson: Thorough documentation of the system is crucial to
success of future systems. Successful systems are often accompa-
nied with copious amounts of documentation. A prime example of
this model is the Hadoop MapReduce open-source implementation.
Hadoop MapReduce is a complex system, however numerous indi-
viduals and organizations spent significant effort in documenting
the system, both in providing code examples and reference texts
explaining the important parts of the system. Without this docu-
mentation, it is unclear how many people would have had the spare
time to learn to use such a sophisticated framework.

3.2 System Performance Analysis Problems
Problem: A VM complicates system performance analysis.

Indri is written in C++. The system fully compiles from source
to machine code, making runtime execution very fast, and allowing
for direct management of allocated memory. These are clear ad-
vantages when a researcher is concerned with system performance.
However Galago was designed for modularity and extension. C++
is powerful, but it is also a difficult language to master, and may
even have different behaviors on different machines depending on
the architecture and compiler used.

To avoid these problems, Java is the language of choice for Galago.
In many ways, it proved to be the right choice. At the time C++03
was in sore need of an update, and any modification of Indri proved
to be torturous for any individual not intimate with most of the
code base. Java removed the need for header files and moved the
focus away from managing explicit pointers to implementing re-
trieval models and better design of processing algorithms.

However, several researchers at CIIR have shown interest in ef-
ficiency of retrieval systems, and Galago has proven to be a diffi-
cult system to deal with in this regard. Several procedures in Java,
such as auto-boxing of primitives, and automatic garbage collec-
tion, have significant impact on wall-clock measurement and mea-
surement of memory usage. In several instances, we have encoun-
tered large ‘bumps’ in timing data that we later realized was due to
the virtual machine (VM)’s garbage collector performing a sweep.
This kind of systemic incontinence is unacceptable from a systems
measurement perspective.

In TupleFlow, the situation is not much better. Shuffling and
sorting of large streams of data also suffer from overhead incurred
in using the Java VM. For example the immutability of Strings,
and then placement in the permGen memory pool required us to use
our own string pooling mechanism to avoid exhausting memory too
quickly. In a similar example, Hadoop MapReduce provides their
own implementation of most of the boxed Java primitives in order
to increase serialization and deserialization efficiency.
Lesson: Implementation language may inadvertently define a
system’s emphasis. The case of Galago shows two competing
tensions in the research arena; efficiency and systems researchers
prefer the low-level control afforded by a language such as C++,
whereas researchers concerned with retrieval models (including learning-
to-rank and users of external data sources) tend to prefer work-
ing in higher-level languages, where they can ignore issues such
as memory-management or compression, and instead focus on the
formulation of their respective scoring functions.

The choice of Java was relevant at the time due to limitations
inherent in C++, and it seemed to provide a release from the purga-
tory of managing pointers and complicated inline functions in In-
dri. However this has also come at the price of control over several
components of the system, and has made optimization of Galago
more difficult. Ultimately, the choice of implementation language
should be weighed against the main priority of the system. If you
intend to support extensibility and portability, Java is still an obvi-

http://www.spark-project.org/
https://cwiki.apache.org/FLUME/

ous choice, as many projects have shown. However if your focus is
on compression algorithms and indexing strategies, C++ provides
a better platform for development.

Additionally, new languages, such as Scala9 and Go10, should be
considered in future implementations. Although this may cause a
“yet-another-language” issue, new languages are often developed
to address the shortcomings of their predecessors. For example,
Scala compiles to JVM bytecode, allowing it to use Java compo-
nents. Additionally, the syntax of Scala is much less verbose than
Java, and it even allows for rapid development of domain-specific
languages. Future implementations of OSSEs may greatly benefit
from the added capabilities of newer languages, however the choice
of language, in many ways, defines the emphasis of the system be-
ing built.

3.3 Software Fragility
Problem: Backwards incompatibility. Right now systems such

as Indri and Galago have several backward compatibility issues at
the index and internal API levels. The standard update cycle for In-
dri and Galago currently suggests you rebuild any index you want
to use with the new version, as the old indexes are simply con-
sidered defunct. When TREC collections or corporate collections
numbered in the hundreds of thousands, or even into the low mil-
lions of documents, this was merely a tedious inconvenience. How-
ever, asking an end-user to rebuild a CLUE-sized index as a matter
of process may well be unreasonable to many, and may even be
impossible for those without the necessary resources. Additionally,
changes to the internal API, which mostly affect plug-and-play sys-
tems like Galago, often impact any extensions users have created
and renders them useless until they update to the new API.

Lesson: Design assuming that change is imminent. The in-
ternal mechanisms that interact with indexes should be capable
of handling some amount of backwards compatibility. Lucene,11

for example, guarantees that all index file formats are backwards
compatible, preventing users from being forced to re-index collec-
tions. In an even larger scale example, protocol buffers, the data
interchange format used most heavily at Google12, was specifically
designed for changes to occur to the definitions of the generated
classes. As long as the changes are only additive, protocol buffers
are guaranteed to be backwards compatible as well. Concerning
the internal API, the best solution is to establish a standard that is
sufficiently general such that the details behind the API can change
without the need to adjust the API itself, while specific enough to
allow users the necessary level of control within their extensions.
While changes to the API cannot always be avoided, this will at
least minimize the impact of small changes.

Problem: Difficult to extend. A major drawback of a system
like Indri is the difficulty one encounters when attempting to add
new functionality, such as a state of the art retrieval model. While
Indri’s C++ implementation allows for tight memory control and
fast single-processor retrieval, adding additional functionality re-
quires rooting around the internals, getting your hands dirty, and
likely hitting many dead ends. What should take an hour can take
days or weeks to the user unfamiliar with Indri’s implementation.
This is especially unpleasant given the necessity to explore new
models in the fast paced world of information retrieval research. As
we have already mentioned, one of the goals of Galago was to of-
fer extensibility. However, in many of the earlier forms of Galago,

9http://www.scala-lang.org/
10http://golang.org/
11http://lucene.apache.org/
12http://code.google.com/p/protobuf/

extensibility was not always as prevalent as we hoped. Many func-
tionalities were difficult to add in a clean and modular way, such as
certain types of operators and index traversals such as passage or
extent retrieval.

Lesson: Make modular extensibility a stronger focus. Retro-
spect also shows that some capabilities involve several axes, each
of which should be designed for extension. Our canonical example
is a user wanting to perform phrase-based retrieval over document
passages. Passage-scoring requires a change in the semantics of
what a “document” is, while phrases require knowing the positions
of terms in documents. The interaction of these two concepts pro-
vides an interesting implementation challenge; one that would have
influenced the design of the original system.

When a user wants to add functionality to a retrieval system, it
should be possible to do so easily and without modifying the core
system. That way the core can be updated independently of the
extension. Part of the issue we encountered with Galago was not
having the foresight to make certain components easily extendable.
The key is to listen to what users want to extend but cannot. Rather
than implement the desired functionality into the core, refactor the
targeted component to be more modular and easily extended by
users.

Problem: Different environments cause different problems.
This problem plagued us in two different scenarios: at the dis-
tributed processing, “web-scale” level, and at the highly constrained,
“mobile-device” level. We discuss each instance in turn, both of
which lead us to a larger verdict.

Distributed indexing and retrieval. There is a large area of re-
search that is emerging around distributed indexing and informa-
tion retrieval. Information retrieval has long been focused on the
problem of sorting and storing huge amounts of textual data, there-
fore parallel scalability is becoming one of the most important con-
cerns in an IR system. A key problem in developing a distributed
OSSE is that distributed processing environments each make dif-
ferent assumptions about the resources available to a distributed
process. This means that each assumption that a system makes will
reduce the number of clusters that can run the software.

High-level systems, such as Spark,13 Pig, 14 and Hadoop, to
name a few, provide high level interfaces for processing data. They
require that the data is read and streamed through a series of func-
tions provided by the distributed system and user defined functions
are called for each data element. These systems generally take over
the job generation, submission and control aspects of distributed
programming. However, the assumptions made in these general
processing systems may not be optimal for an IR system. A sec-
ondary concern is the measurement of parallel performance within
systems like these cannot be tightly controlled.

Low-level systems, such as Grid Engine15 and Mesos,16 provide
low level interfaces for running a set of programs on nodes within a
cluster. In these systems, users must write code for job generation
and control. The effect of node failure is a vital consideration when
programming for these low-level systems. The storage of the data
is also a major consideration for any distributed process. A central-
ized network attached storage can easily become a bottleneck for
large clusters. A distributed file system is more scalable, but can
lead to up to a network bottleneck, with up to O(n2) simultaneous
communication channels between n running jobs.

13http://www.spark-project.org/
14http://pig.apache.org/
15http://gridscheduler.sourceforge.net/
16http://incubator.apache.org/mesos/

http://www.scala-lang.org/
http://golang.org/
http://lucene.apache.org/
http://code.google.com/p/protobuf/
http://www.spark-project.org/
http://pig.apache.org/
http://gridscheduler.sourceforge.net/
http://incubator.apache.org/mesos/

In Galago we use the Tupleflow framework to generate jobs and
provide submission control. A key problem of this system is that
it assumes a centralized network attached storage system, which
avoids the O(n2) blowout of a distributed file system, but can cause
a bottleneck when performing many parallel disk operations. It is
also important to note that Tupleflow’s assumption of job control
makes implementing an interface or job translation layer to high
level distributed systems, such as Spark, Pig, or Hadoop, almost
impossible. However, this same assumption allows TupleFlow to
be easily extended to run on any cluster management software that
allows direct submission of a series of binary or scripted jobs to be
run in parallel.

Mobile phone deployment. When deploying Galago on an An-
droid mobile phone platform, we encountered difficulty in even get-
ting the system to operate correctly. Due to limitations in resources,
mobile phones may only offer a subset of the standard API. In prac-
tice this meant that Galago did not have access to the full Java API
when installed and executed on the Android JVM. Memory man-
agement and monitoring interfaces were not implemented in many
early versions of the Android JVM. A crucial problem was that the
Android environment replaces these unsupported API calls with
no-op commands – this meant that compilation was possible, but
execution would often produce errors from seemingly random, but
dependent, sections of code.

Lesson: Be mindful of environmental assumptions. An OSSE
must be careful about the assumptions it makes about the environ-
ment it will execute in. Tupleflow’s assumption of a networked
attached storage system directly limits several key parameters of
the distributed processing space, such as 1) the number of parallel
jobs, as the creation of too many jobs can overload the file server,
and 2) the maximum number of concurrent open files, to name a
couple. We believe that the best solution needs to appropriately ab-
stract job control, data storage and transfer, and failure protection,
to allow for maximum efficient scalability.

Conversely, when considering environments with limited resources,
many of the decisions that aid the large-scale case are useless, or
even detrimental, when resources are limited. Libraries and rou-
tines must be heavily optimized to squeeze every cycle and byte
possible out of the scarce resources. While we offer no grand-
unifying solution to this scale problem, we know OSSE designers
must always be aware of the possible substrates their system may
be planted in.

4. LOOKING FORWARD
Now that we have discussed the perceived advantages and disad-

vantages of using Galago, we turn towards “wishlist” items for the
next-generation of OSSEs.

4.1 Unified Query Language
Each research retrieval system uses its own custom query lan-

guage. For example, Indri supports a subset of INQUERY 17 queries
in addition to several of its own, while Galago borrows from In-
dri, but differs in syntax and allows a more extensible formulation.
Lucene and Terrier 18 each have their own query syntax (although
their syntax is quite similar to each other). Table 1 shows some
examples of the syntax used across these OSSEs. The difference in
syntax means that a query formatted for Galago will not work with
Indri, Lucene, or Terrier, causing issues if a user wants to move
from one retrieval system to another. One way around the incom-
patibility of query languages is to settle on a standard, unified query

17http://www.ushmm.org/helpdocs/inquerylang.htm
18http://terrier.org/

System Proximity Boolean not
Galago #uw10(a b) #reject(#any(a) b)
Indri #uw10(a b) #not(a) b
Lucene “a b”∼10 -a b
Terrier “a b”∼10 -a b

Table 1: An example of the query syntax for finding terms
within a given proximity and using boolean negation under dif-
ferent retrieval systems.

syntax for the common operators across retrieval systems, e.g., for
the operation of searching for a set of ordered terms. However,
since each system has its own unique capabilities, it is also neces-
sary to allow any unified query language to be extensible.

While we do not presume to have a solution to this issue now, we
believe the issue warrants discussion among the participants of the
OSSE community. Many other communities have greatly benefited
from standardization of the expression of their common concepts,
surely the information retrieval community would stand to also gain
by making a similar move.

4.2 External Data Services
A common theme in recent research is the use of external data

sources in retrieval models. Sites like DBPedia,19 Freebase,20 and
the Open Directory Project21 provide free access to semi-structured
data that provides information beyond a solitary indexed collec-
tion. In the upcoming wave of next-generation OSSEs, these data
sources should be viewed as a persistent service, accessible by any
researcher or client organization. There are obvious advantages to
establishing common APIs to make use of these sites as services,
including:

Less experimental variation. If all researchers had equal ac-
cess to a set of static data services, then we can exclude potential
sources of variance such as differences in data preparation that can
often significantly impact results.

Less repeated work. Currently multiple organizations have to
perform their own data acquisition and preparation for different
data services. These processes are often labor intensive, and pre-
clude any research involving these data sources. A single point of
access and curation for these services could keep everyone from
repeatedly “reinventing the wheel”.

Reduced maintenance burden. Maintaining the API to a sin-
gle data source is not itself difficult, but having to keep each of the
systems up and running presents a large maintenance overhead for
any organization. In the case of a smaller research group or a start
up trying to break into a specific vertical of research, this over-
head may be prohibitive. Spreading the maintenance work over
several sites reduces the load on any single site, and certainly re-
duces wasted load due to unnecessary replication of maintenance.

4.3 Persistent Web-Scale Index
The ClueWeb project22 is a considerable step towards bringing

modern-day web-scale collections to information retrieval researchers.
Unfortunately, not all information retrieval researchers can make
use of the dataset, as compressed storage alone requires over 7 TB

19http://dbpedia.org/About
20http://www.freebase.com/
21http://www.dmoz.org/
22http://lemurproject.org/clueweb09.php/

http://www.ushmm.org/helpdocs/inquerylang.htm
http://terrier.org/
http://dbpedia.org/About
http://www.freebase.com/
http://www.dmoz.org/
http://lemurproject.org/clueweb09.php/

of space. On top of storage costs, it is simply not feasible to index
a collection of that magnitude using a single machine. Even with
enough resources available to process the collection, indexing the
ClueWeb collection is not a trivial task, and future collections will
only require more time and resources to manage.

As an alternative solution, we hope that the OSSE community
would be willing to consider a crowdsourced-style solution, where
instead of the same enormous monolithic collection being managed
by each organization individually, instead each organization can be
responsible for making the some portion of the collection available
to other organizations as a callable API or service. This would
provide the same benefits listed above, and each organization can
instead focus on providing high reliability to a manageable set of
documents, versus trying to simply complete the indexing process
for themselves.

5. CONCLUSIONS
The open source IR community needs to reach some level of

agreement in several key areas in order to move into the next phase
of relevant research. In the past it was sufficient to perform experi-
ments in an isolated environment, using either a single machine or a
small cluster of machines specially purposed for the indexing task.
However, if the next generation of open source search systems are
to be relevant to clients and researchers alike, we must consolidate
effort towards agreed standards. Towards this effort, we hope our
experiences with Galago will provide valuable insight in the design
of the next generation of open source search engines.

Galago provides three components that we believe should be
standard elements of any next-generation open-source retrieval sys-
tem: 1) A query tree representation of the query language, with op-
erators and traversals that can be applied to the tree and composed
in order to produce more complex higher-level functions; 2) inte-
gration with a distributed processing environment, preferably one
that allows for high-level operations; and 3) extensibility to the core
system. We believe the core of the system should serve as a skele-
ton for plugging in components that can be used during indexing
and retrieval. It should be simple for an external user, with mini-
mal knowledge of the internals, to extend the functionality of the
core system.

Over the course of using and developing Galago, we also noted
several issues with the system that, if possible, should be avoided
in future OSSE implementations. While the effort to make Galago
“everything to everyone” is admirable, it resulted in many difficul-
ties that required redesigns of several components of the system,
with still more improvements that could be made. We hope im-
plementors of future systems can learn from our experiences, and
design a software system that addresses each of these issues well
before they are forced to deal with them.

Finally, we provide a “wish list” of ideas for the OSSE com-
munity. While these ideas are lofty, they would work towards the
benefit of all involved parties, steering the focus away from the ever
increasing, but necessary engineering and procedural overhead, and
back towards developing cutting-edge search products and seminal
research.

6. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent In-

formation Retrieval, in part by NSF grant #IIS-0910884, and in part
by NSF grant #CNS-0934322. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the sponsor.

7. REFERENCES
[1] M.-A. Cartright, E. Aktolga, and J. Dalton. Characterizing

the subjectivity of topics. In Proceedings of the 32nd
international ACM SIGIR, SIGIR ’09, pages 642–643, 2009.

[2] M.-A. Cartright and J. Allan. Efficiency optimizations for
interpolating subqueries. In Proceedings of the 20th ACM
CIKM, CIKM ’11, pages 297–306, 2011.

[3] M.-A. Cartright, H. Feild, and J. Allan. Evidence finding
using a collection of books. In Proceedings of the 4th ACM
workshop on Online books, complementary social media and
crowdsourcing, BooksOnline ’11, pages 11–18, 2011.

[4] J. Dalton, J. Allan, and D. A. Smith. Passage retrieval for
incorporating global evidence in sequence labeling. In
Proceedings of the 20th ACM CIKM, CIKM ’11, pages
355–364, 2011.

[5] H. Feild, M.-A. Cartright, and J. Allan. The university of
massachusetts amherst’s participation in the inex 2011 prove
it track. In S. Geva, J. Kamps, and R. Schenkel, editors,
Focused Retrieval of Content and Structure: 10th (INEX
2011), volume 7424 of LNCS. Springer, 2012.

[6] S. Huston, A. Moffat, and W. B. Croft. Efficient indexing of
repeated n-grams. In Proceedings of the fourth ACM WSDM,
pages 127–136, 2011.

[7] J. Kim and W. B. Croft. Retrieval experiments using
pseudo-desktop collections. In Proceedings of the 18th
CIKM, pages 1297–1306, 2009.

[8] V. Lavrenko and W. B. Croft. Relevance based language
models. In Proceedings of the 24th SIGIR, pages 120–127,
2001.

[9] D. Metzler and W. B. Croft. A markov random field model
for term dependencies. In Proceedings of the 28th annual
international ACM SIGIR, SIGIR ’05, pages 472–479, 2005.

[10] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25
extension to multiple weighted fields. In Proceedings of the
13th CIKM, pages 42–49, 2004.

[11] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-Poisson model for probabilistic
weighted retrieval. In Proceedings of the 17th SIGIR, pages
232–241, 1994.

[12] T. Strohman. Efficient Processing of Complex Features for
Information Retrieval. PhD thesis, University of
Massachusetts Amherst, 2007.

[13] T. Strohman and W. B. Croft. Efficient document retrieval in
main memory. In Proceedings of the 30th annual
international ACM SIGIR, SIGIR ’07, pages 175–182, 2007.

[14] R. S. Sutton, D. Precup, and S. Singh. Between mdps and
semi-mdps: a framework for temporal abstraction in
reinforcement learning. Artif. Intell., 112(1-2):181–211,
Aug. 1999.

[15] H. Turtle and W. Croft. Evaluation of an inference
network-based retrieval model. ACM Transactions on
Information Systems (TOIS), 9(3):187–222, 1991.

	Introduction
	Affordances of Galago
	Scoring Model Representation
	Operators
	Traversals

	Generalization of Distributed Processing
	Pluggable Components

	Problems Encountered
	Steep Learning Curve
	System Performance Analysis Problems
	Software Fragility

	Looking Forward
	Unified Query Language
	External Data Services
	Persistent Web-Scale Index

	Conclusions
	Acknowledgments
	References

